Math 2210 § 4. Final Exam Name: Practice Problems
Treibergs Aprinl 10, 2019

Half of the final exam will be comprehensive. The other half will focus on the material covered
after the second midterm exam: multiple integrals and vector calculus. Here are some problems
from the latter part of the course.

1. Let R={(z,y) : 1 <x <3, 4 <y <5}. Approzimate the integral I = [[,/x+y, dA by

calculating the corresponding Riemann Sum using the partition of R into eight equal sized
squares. Assume that the sample points (xy,yx) are the centers of the squares.
The squares are cut by the lines y =4, y =45, y =5, =1, x =15,z =2, =25
and x = 3. Thus the first 0.5 x 0.5 square has center (x1,y;) = (1.25,4.25). Here is a little
table of centers and function values at the centers generated by a program in ©R. We also
compute their sum.

k x k y.k f(x_k,y_k)

1 1.256 4.25 2.34521
2 1.25 4.75 2.44949
3 1.75 4.25 2.44949
4 1.75 4.75 2.54951
5 2.26 4.25 2.54951
6 2.256 4.75 2.64575
7 2.75 4.25 2.64575
8 2.75 4.75 2.73861
Total 20.37332

Using AAr = 0.5 x 0.5 = .25, the Riemann Sum is thus

8

8
I~ flaryr) Adg = 25> f(ax, yx) = .25 - 20.37332 = 5.093331.
k=1 k=1

2. Find the actual value of the integral I from Problem 1.

Using iterated integrals we have

1
/ / (r+y)2 dydx
rx=1Jy=4

:/x 1 [3(m+y)gL_4 dx

3

2 3 3
== (x+5)2 — (v +4)2dx
3 =1
212, 8 2 .8 3
= — | = 2 — = 2
3 {5(x+ )2 —gletd) L—l
4 5
T5 [82 _62 —72 +52} =~ 5.092691.

Thus the approximation in Problem 1 was fairly close.



3. Find the volume of the solid in the first octant bounded by the coordinate planes and the
planes 2z +y—4 =0 and 8x +y — 4z = 0.

The lower surface is z = 0 and the upper surface from the last plane is

1
_2 —
z = x+4y

which is positive in the first octant. The solid is bounded on the sides by the coordinate
planes = 0, y = 0 and second to last equation y = 4 — 2z making the base of the solid a
triangle. In y = 4 — 22 we have y = 0 when = 2 so 0 < z < 2. Thus the volume is given

by the iterated integral
2 4—2x 2z+iy
V= / / dz dy dx
=0 Jy=0 z=0

2 pd-2 1
= / / 2x+ —ydydz
z=0 Jy=0 4
2 1 4—2x
= / [Q:Ey + yQ] dx
=0 8 y=0
2 1
= / 22(4 — 2x) + §(4 —2z)? da
2 1
= / [8x — 4% + [2 —2z+ 23:2} dx
=0

2: 7
:/ 2—|—6x—§x2daj

4. Ewvaluate by using polar coordinates. Sketch the region of integration first.
2 V2x—1x2 1
I:/ / (m2+y2) 2 dydzx.
r=1 Jy=0

The upper curve y = v2z — 22 may be rewritten

y? =2z — 2?

or
(x—1)2 4y =2 -22+1+¢%=1

which is a unit circle of radius one centered at the point (1,0). Thus the region of integration
R is the quarter circle 1 <z <2 and 0 < y < v/2x — x2, given in Figure 1.

Thus for polar angle § when z = rcosf and y = rsin 6 satisfy the equation
1= (rcosf —1)> +72sin?0 = r? cos? @ — 2rcosf + 1 + r’sin® 6 = % — 2rcosf + 1

sor =20 or
r=2cos6.



|

(1,0) X

Figure 1: Region of integration R.

The curve 1 = z = r cos 6 becomes

r= =sech.

cos 0

The circle and = = 1 intersect at the point (1,1) where § = % Thusas 0 <60 < % we have
sec < r < 2cosf. Finally 2% 4 y? = r2. Thus the integral in polar coordinates is

% 2 cos 0 1
I= / / —-rdrdf
=0 Jr=seco T
% 2cosf
/ / dr df
0=0 Jr=sect

4
:/ 2cosf — sec O db
0=0

1
= [ZSinﬂ — log | sec 6 + tan 0|
=0

=2 —log(v2+ 1) ~ 0.53284.



5. Find the mass and center of mass of the lamina of constant density k bounded by the cardoid
r = a(l 4+ siné) that is outside the circle r = a.

Figure 2 gives the plot using my Macintosh’s Grapher.

Figure 2: Cardoid and circle with a = 1.

The lamina satisfies 0 < 0 < 7w and a < r < a(l +sinf). The mass is

T a(1+sin )
M = / / krdrdf
0=0 Jr=a

k a(1l+sin0)
L
o=0 12 l,—q

k T
:f/ a*(1 4 sin6)? — a? df
2 Jo—o
2]€ m
25 [ 9sing +sin20d8
2 Jo=o

2 s
_ak (|:2(3089] +7T)
2 o—0 2

a’k T

= 5 (20 - (20 + 3)

= (2 + %) a’k.

The lamina is symmetric left /right, so it balances on the y-axis or Z = 0. To compute its



moment about the z-axis, using the integral formula 113 on the back endpaper of the text,

M, :// yo dA
(14sin @)
/ / krsin@rdr do
6=0 Jr=

1 a(1l+sin0)
{ST sin 9] df

T=a

_ k/
=0
= E/ {a3(1 + sin )% — ag] sin 6 d6
3 Jo=o
ka®

3sin? 0 + 3sin® 0 + sin* 0 do
3 Jo—o

L N
3 2 )
hr 4

==+ - ) kd®.
(5 +3)m

It follows that the y coordinate of the center of mass is

om 4 3
<8+3> ha” <157‘r+32

g M _
(A Va (2+ ) a2 67 + 48
1

> a ~ (1.183611)a.

6. Find the area of the surface of the hemisphere 2% +y%+ 2% = a? and z > 0 inside the elliptic
cylinder b22% + a?y? = a?b? where 0 < b < a.

Note that the ellipse £
PRI
R _|_ b72 =1
has major and minor radii ¢ and b so it lies within the equator of the sphere. Thus

—a <z <aand —gvaz —z2<y< g\/az — x2. The upper surface is given by

2= flz,y) = (a2 — 22 — %)

SO

€ Y
f =, f = ——
‘” a2 — 22 — o2 Y a2 — 22 — o2
and
2 2 2 2
a? —a? — x a
L+ f2+ 1 = 2 y2 2_ g2 2 2 y2 2 T g2 _ g2 2
Zoa?—y? a2 —y? a? -2y a? —x% —y

The area is thus
A://1/1+f§+fy2dA

b/a?=z2
/ / dydx
—aJ-t a7 \Ja? — x2 — 2



Substituting y = va? — a?sinu we get dy = va? —z?cosudu and —0y < u < 0y where
b

sinfy = —. We get
a

= / / VaZz =22 cosudu i
—aJ=60 Va2 — 22/1 —sin®u
= a/ / du dx
—a J—0y
¢ 2 9. —1(0b
:a/ 200 dx = 4a“0y = 4a” sin (>
—a a

7. Consider the part of the sphere x2 + y? + 22 = a? between the planes z = hy and z = hy,
where 0 < hy < hg < a. Find the value h such that the plane z = h cuts the surface area in
half.

hi 4+ ha

Answer: h = . This is because the area of the spherical region is proportional to the

height. In fact it equals the area of the corresponding cylinder whose base is the equator of

the sphere, namely
A= 27ra(h2 — hl)

so that above the z = h plane the area is

= ﬂa(hg — hl) = EA

1
Ay =2ma(he — h) = 27a (hg - M) =

8. Find the center of mass of a solid bounded by the cylinder x +y? = 4 and the planes z = 0
and z = 6 if the density §(x,y,2z) = k(z? + y* + 22).

It is natural to use cylindrical coordinates & = 7 cos ), y = rsin @ and z. Thus § = k(r?+22)
and the solidis 0 <r <2,0<60 <27 and 0 < z < 6. The mass is

M:///5dv
/ / k;?“ + 25 rdrdfdz
z2=0J6
2,272
:k/ / {r+”} 6 dz
z2=0J6=0 4 2 r=0
6 27
:k/ / 44222 d0d>
z2=0J6=0

6
= 27rk;/ 4+ 22%dz
z=0

2
= ok <4-6+ 3 63> = 3367k.

The solid and density are rotationally symmetric about the z-axis so the center of mass is



on the z-axis: £ = § = 0. It remains to compute the moment about the zy-plane.

Mwy:// 0zdV
/ / / zrdrd@dz
z=0 J o= r=0

P23 2
P
2=0J0 r=0
:k/ / 4z + 22 dOdz
2=0 J6=0

6
=21k 4z +223dz
2=0

1
= 27k (2 -6% + 3 64) = 14407k.

The z coordinate of the center of mass is

M,, 14407k 30
M 3367k 7 857

P
9. Use spherical coordinates to find the the quantity
3 9—x2 Vo—xZ—22 3/2
I:/ / / a; —|—y2+z2) dydz dx
—3J—V9—ax? V9—a2—22
The domain of integration is a sphere of radius p = 3 and dV = dydzdz. Note that here
the y-integration is taken on the inside but since the integrand and domain only depend

only on the radius, the integration can be done in any order. Using p? = 2% 4 y? + 22 and
the usual spherical coordinates,

/ /9 /¢ Op -p*sin g do df dp
B /p=0 /9=0 [_p5 Cos‘z’} ;_O do dp
B /p: /Z; P°[=(=1) + ()] b dp
=2 [

3 36
:47r/ p°dp = 4 - — = 486m.
p=0 6




10. Let the region R in the first quadrant be bounded by the circles x® + y? = 2x, 2% + y? = 6z
and the circles % + y? = 2y and x> + y? = 8y. Use a transformation to evaluate

1
I=[] —— .
[f e

Rewritten, the bounding circle equations are (x—1)2+y% = 1, (z—3)?+y? = 9, 22+ (y—1)? =
1 and 22 + (y — 4)? = 16, which are circles throught the origin whose centers are (1,0),
(3,0), (0,1) and (0,4), resp. We sketch the region in Figure 3.

AY

Figure 3: Region bounded by circles.

Making the change of variables

2x 2y
U= ——:= V= ————
x2+y27 .’)32+y2

we see that the corresponding region in the (u,v) plane is a rectangle T bounded by % <
u <1 and i < wv < 1. Noting that

4(z? 2 4
ut v = (i +Z2): 2 .2
(@ +y?)? 2?4y

we see that

—_

1
u==(u?+v%)z, vzi(u2+v2)y

[\

so the transformation G(u,v) = (z(u,v),y(u,v)) is
_ 2u v
7U2+’U2’ y7u2+v2'
It maps G(T') = R. Also, the integrand transforms to

1 1 2 2\2
Flatus o) = Gyt =36

Computing the partial derivatives

or  2(v?* —u?) Ox duv dy duv oy  2(u* —v?)

ou (u?+0v2)? v (u2+02)? ou  (u2+0v2)2’ o (u2+02)?



The Jacobian determinant

or Ox 2(v? — u?) duv
Sy~ 200 o dg| | GFEER G| | o )1t
’ A(u,v) Oy Oy 4uv 2(u? — v?) (u? + v2)*
ou v (w2422 (u2 4 02)2
—dut + 8y?v? — 4vt — 16uv? —4dut — 8y%v? — 4t —4(u? +0?)? —4
- (u? +v?)? - (u? 4 v2)4 T @)t (W)

Finally, transforming the integral

I//Gm f(a,y) dody

- //T f(@(u,v), y(u,v))[J(u,v)| dudv
N /L; /;i %(UQ +v?)?- ﬁdvdu

1 [t 1 1 1 1 1
—— dvdu==[(1-=)(1-=)==.
4L—; /v—; o 4( 3>( 4) 8

11. Suppose ¢ # 0 and m # 3. Show that divF # 0 but curl F = 0, where

F(z,y,2) = ﬁ r(z,y,2) = 2i+yj+ zk.
We have
di 1'—3:10—1—2 +gz 3
VIS e 8yy 0z~
and
i j k
dz 0Oy\. or 0z). Jdy O
Ir=|a o o|l=(Z_-22 o Y _Vk—o.
AT = 19 oy o (8y az>l+(82 5‘:5)J+(8x 5‘y> 0
x Yy oz

Let f = ¢/||r||™. We have

1= 55
[

= Ve (x2 + 12 +22)_%

= f% (z® +y* + 22)_7_1 (21 + 2yj + 22k)
_ omr

R HEs



Using the formula div(fr) =V -r+ fdivr with m # 3 and ¢ # 0 we find that

divF = div(fr)
=Vf-r+ fdivr

cmr 3c

= T T e

em ||r]|? 3c
[rffm+2 fel™

<3|| ||7Z) #0

Using the formulae curl(fr) = Vf x r+ fcurlr and r x r = 0 we find that

curl F = curl(fr)

=Vfxr+ fcurlr

cmr

- _xr40=0.
ez *E

12. Find the line integral I where C' is the curve x = 12cost, y = 12sint, 2 =5¢, 0 <t < 7.
I:/(x2+y2+x2)ds.
c

The element of arclength is

ds = /22 4+ 92 + 32 dt = \/(—12sint)2 + (12cost)? + 52 dt = \/122 + 52 dt = 13 dt.

Thus

I :/ ((12cost)® + (12sint)* + (5¢t)*) 13dt
0
= 13/ (144 + 25¢%) dt
0

=13 (1447r + 23571'3> )

13. Find the line integral J where C is the curve x = e', y=e !, z=¢e?, 0 <t < 1.

I:/ zzdr + (y+2)dy +x dz
C
Using dx = & dt = et dt, etc.,
1
1= / et etdt+ (et +e*) - (—e ) dt+ e -2 dt
0

1
:/ e4t _€—2t _ et +2e3t dt
0

:|:164t_e—2t_et+ o3t

4 0
—1(64—1)—1(6_2—1)—64-1—}—*(63—1)
T4 2

1, 1, 2, 7

T1¢ T3¢ T Tetge s

10



14. Find the work done by the force field F(x,y, z) = (2x — y)i + 22j + (y — 2)k in moving the
particle along a curve the line segment from (0,0,0) to (1,2,3).
) y(t), 2(t

The line segment C' is given by v(¢) = (z(¢ )) where

T =t, y = 2t, z = 3t, 0<t<1.
The force field along the curve is

F(t) =F(x(t),y(t), 2(1))
= (22(t) — y(t))i+22()j + (y(t) — 2(2))k
=(2t—2t)i+2-3tj+ (2t — 3t)k
= 6tj — tk

The work is given

Wz/F-Tds

Y .
— [ BTl
o T
:/F-ﬁdt
C

1
:/ (6tj — tk) - (i + 2j + 3k) dt
0

1 1
:/ O+12t—3tdt:/ 9tdt = -
0 0

15. Use a line integml to compute the area of that part of the cylinder % + y? = ay inside the
sphere 22 + y2 + 22 = a®. Hint: use polar coordinates.

If £ = rcosf and y = rsin @ then the cylinder equation is a curve C' in the xy-plane given

by

r2 =12 cos® 0+ r?sin®0 = arsin 6

whose solution is 7 = 0 or r = asinf. The vertical distance is determined by the sphere.

The half height from z = 0 to the sphere is

2 2 2 2 2 2 2 2 2

22=a? -2 -y =a® —r?cos® 0 —r’sin®0 = a® — r? = a® — a*sin? 0 = o?

cos? 6

so z = a|cos]. We use absolute value since z is positive on both the 0 < § < 7 side and
on the § <6 < 7 side. The arclength in polar coordinates is
ds® = da® + dy®
= (cos @ dr — rsinf df)* + (sin @ dr + r cos 0 df)?
= (cos? @ + sin? 0) dr? + (—r cos @sin § 4 7 sin 6 cos ) dr df + r*(sin? § + cos® ) dh*
=dr? + 12 db?.

But r = asin 8 so that
dr = acos 6 db

and

ds = \/dr2 + r2d62 = /a2 cos2 0 + a2sin2 0 df = a db

11



The integral giving the area of the cylinder within the sphere is

A:/ 2zds
c

= / 2a| cos | - adb
=0

™

:4a2/2 cos 0 df
6=0

Z
= 4a? {sin 9] = 4a’.
0

16. Determine whether the given vector field F(z,y,z) = (2zy + 22)i + 22j + (2z2 + mcosm2)k
is conservative. If so, find f so that Vf =F.

The field is conservative in R? (which is simply connected) if it is continuously differentiable
(it is because it consists of nice functions) and curl free. Computing the curl we fine

i j k
curl F = 9 9. 9
ox Jy 0z

(2xy + 22) 2% 2xz+mcoswz

[0 0 5. 0 9 0 .
= (ay(sz—l—wcoswz) 255 )1—|— (62(29611—1—2 ) 8x(2mz+7rcos7rz))J

9 o 0 2
—x°— —(2 k
=0i+ (22 —22)j+ (2v —22)k = 0.
Thus F is curl free. The gradient satisfies
Vf=Ffi+ fyi+ f-k=Q2zy+ 22)i+ 2% + (222 + wcosm2)k
SO
fo = 2wy + 22
fy = x?
f.=2xz+ mcosmz
Antidifferentiating the first equation with respect to x says
fx,y,2) = 2%y + 22% + Cly, 2)

where the “constant” of integration may depend on y and z. From the second gradient
equation, the partial derivative of this with respect to y says

fy= %+ Cyly,z) = x2

so Cy = 0 and C(y, z) = D(z) which is a “constant” that may depend on z. Differentiating
with respect to z and using the third gradient equation

f.=2xz+ D, =2xz+ mcosmz

12



17.

18.

so that D, (z) = wcos7z so that
D(z) =sinmz+k
where k is constant. Finally
f(z,y,2) = 2%y + 2% + sinwz + k.
We check that its gradient is Vf = F as desired.

Show that the integral is independent of path. Fvaluate either by choosing a convenient path
or by using a potential function.

(1,1,1)
1= / (621> + 22%) dz 4+ 922y dy + (4zz + 1) dz
(0,0,0)

If a potential function can be found, then the integral is independent of path. It satisfies
Vf=fodz+ f,dy+ f.dz = (62y> + 22%) dzx + 92°y* dy + (4z2 + 1) d=.

The first equation is
fo = 621> + 222

Integrating with respect to x yields
f =322+ 2222 + C(y, 2).

Thus
fy=0Cy = 922y

so C(y,z) = 322y + D(z). Thus
f.=4xz4+ D, =4zz+1
so D, = 1 which means D(z) = z + k. Thus we have found our potential function.
f=3z2 42222+ 322> + 2+ k

Note that this procedure would have failed if the integral was not independent of path. It
follows that
I=f(1,1,1)— f(0,0,0)=(3+2+4+3+k)— (k) =8.

Use Green’s Theorem to evaluate the line integral over the curve C which is the rectangle
with vertices (2,1), (6,1), (6,4) and (2,4).

I= f (e + 2y) dx + (2% + siny) dy
c

?{Mdm—kNdy:// <3N_8M> dA
C S 67) 8y

where S is th region bounded by C. We have M (z,y) = 3 + 2y and N(z,y) = 2% +siny
so that

Green’s Theorem is

ON OM
or oy T2

13



SO

6
:/ 6x — 6dx
=2

- {3& - er = 3(6% —2%) — 6(6 — 2) = 72.

r=2

19. For F = y?i + 22j, use Green’s Theorem to calculate the flux across C and the circulation
along C where C is the boundary of the unit square with vertices (0,0), (1,0), (1,1), (0,1).

Using the Divergence Theorem, the flux is

1 1
j{F-nds://dideA:/ / oy +8id da = 0.
e} =0 o Ox dy

Here M = y? and N = 22. Using Green’s Theorem, the circulation is

ON 8M 0
F-Tds= — — —dA =
%C ds / o d ol Oax 8 —y?dydx

z/ / 2x—2ydyd1‘:/ 2 —1de=1—-1=0.
=0 Jy=0 =0

20. Ewvaluate the integral over the surface S given by z = 2% —y?, 0 < 2% +y? < 1.

I://2y2+zd5’
s

The surface is the graph of the function z = f(x,y) = 22 — y?. The surface element is given
by

dS =1+ f2+ f2dzdy = V1 (22)2 + (—2y)2dady = /1 + 422 + 492 dz dy.

Writing in cylindrical coordinates, x = r cosf, y = rsinf,

1 27
I:/ / (2r sin? 0 + 72 cos® 6 — r? sin 9) (1—}—47“2)% rdf dr
r=0.J6
1 T 1
:/ / (r2 sin® 6 + r2 cos? 9) (1 +4r2)§ rdfdr
r=0J6

1 o .
:/ / r2 (1442 rdgdr
r=0 J6=0

=7 r? (1—1—47"2)% 2rdr

1 1
=7r/ u(l+4u)? du

1
120 [( u=0 60

where we substituted v = r? and used integration formula 96 in the back of the text.

12u — 2) (1+4u)%] [52 +1}

14



21. Calculate the flux with respect to upward surface normal of F = 2i 4+ 5j + 3k across the
surface G which is the part of the cone z = (z? + y2)1/2, z > 0 that is inside the cylinder
2t +y? <1
The surface is the graph of f(z,y) = (22 + y?)'/2. It has

< Y

fom——,  fy= .
z /22 + 32 v /22 + 32
The flux across the surface is given by

I://F-ndS
G

where F = Mi+ Nj+ Pk and (away from the origin)
_fmi - fy.] + k
31+ 2+ 1
which is upward since it has positive k component. Here M =2, N =5, P = 3 so that
k
FondS = (Mi+ Nj+ Pk). oStk e £2 d dy
\ /1 + f2 +f;
=(-Mf, — Nf,+ P)dxdy
2z oY
=|- — +3| dxd
( VaRty ey ) !

Thus, in polar coordinates x = r cos, y = rsinf so

I—/ / ( 2r cos 6 5rsm9+3>rd9dr
r=0.J6 r

:/ / (—2cosf — 5sinf + 3) rdb dr
r=0J6

1
= 677/ rdr = 3.
r=0

It’s no surprise. The sideways component of the field cancels and only the vertical compo-
nent contributes to flux.

n-—

15



22. Plot the parametric surface over the domain R: —5 <u < 3,0 < v < 2w. Find the surface
area. Find the mass of the surface assuming that density is proportional to the distance to
the z-axis.

r(u,v) = (24 cosu)cosvi+ (2+ cosu)sinvj+ sinuk

The surface is the outside of a torus. Here is a picture using Grapher on my Macintosh.

Figure 4: Image of R is the outside of a torus.

The cross product
i j k
Iy XTIy = —sinwu cosv —sinwusinv COS U

—(2+4+cosu)sinv  (2+cosu)cosv 0

= —(2+ cosu)cosucosvi— (2+ cosu)cosusinvj
— (2 + cosu)(sin u cos® v 4 sinusin® v) k

= —(2+ cosu)(cosucosvi+ cosusinvj + sinuk)

so that

[Ty X 1y]|* = (2 4 cosu)?(cos® ucos® v + cos® usin® v + sin® u) = (2 + cosu)’.

SA = // v x 1ol dA
R

5 27
:/ / (24 cosu) dv du
Uu=— v=0

27r/ (24 cosu) du
u=—3%

Thus the surface area is

[NERNE]

%
=2 [ZU + sin u] =d4mr(r+1)

—__ =
U=—3

16



23.

If the density is proportional to the distance to the z-axis, it has the form

O0(u,v) = kr = ky/2? + 42

= k\/(2 + cosu)2 cos? v + (2 + cosu)?sin v

Thus the mass is

= k(2 + cosu)

M:// Ity x ry]| 6dA
R

5 2T
:/ / (24 cosu) - k(2 + cosu) dvdu
uzfg v=0

%
:27rk/ 4 + 4 cosu + cos® udu

:27rk‘[

jus
2

2

1 1
4u + 4sinu + —u + — sin 2u

.
on

using integral formula 21 from the back of the text.

Use Gauss’s Divergence Theorem to compute I =

= 7k(97 + 16)

F - ndS where S is the region
a8
i

2?2+ 22 <y? 2+ +22<L,y>0and F= (2 +9)i+ (P +2)j+ (2 + 23 k.

S is the region inside the nappe of a cone in the positive y-axis direction cut by the unit
sphere. It looks like a top. Gauss’s Theorem says

I://aSF-ndS:///SdideV

In this case,

9] 9]
divF = %(xg’ +y)+ — (@ +2)+

Jy

é( +
8zx

23) = 322 4 3y? + 322

We use “spherical coordinates” where ¢ measures the angle form the y-axis and 6 is polar
angle in the yz-plane.

T = psin¢cosb,

Yy = pcose,

z = psin ¢ sin 6.

The region is thus 0 < ¢ < 7,0 < 0 < 27 and 0 < p < 1. The Jacobian is like spherical

coordinates

oz
Op

J(p,0,¢) = |2
Op

oz
Op

oz
90

9y
a6

9z
90

oz
o¢

oy
09

9z
o¢

sin ¢ cos 6

= | cos¢

sin ¢ sin 0

—psin ¢sin
0

psin ¢ cos 6

pcos ¢ cos 6

—psin ¢

p cos ¢sin 6

= p?sin® ¢ sin? 6 4 p? sin ¢ cos? ¢ cos? 0 + p? sin® ¢ cos? @ + p? sin ¢ cos? ¢ sin? 6

= p%(sin® ¢ 4 sin ¢ cos? ) = p? sin ¢
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Thus

1= // divFdV

/ /9 /deF z(p,0,9),y(p,0,9),2(p,0,0))|J(p,0, )| dp d dp

/ / / 3p° - p?singpdodd dp
0=0J$=0

3/:/ [pcowLOdedp
3/:/ (M?)d@d

6 1ﬁ>/ gy T2V

24. Let F = (y —xz)i+ (x — 2)j+ (x — y) k. Use Stokes’s Theorem to calculate the circulation
1= F - Tds where C is the boundary of the plane x + 2y + z = 2 in the first octant,

c
oriented clockwise as viewed from above.

The plane is the level set H(z,y, z) = 2 of the function H(z,y, 2) = z+2y+z. It is a graph
z = f(z,y) =2 —x — 2y so that Vf = —i — 2j. The piece of the plane in the first orthant
is a triangle. Hence the area form

dS = /14 f2 + f2dzdy = \/1+ (—1)2 + (—2)2 dz dy = V6 dz dy.

The orientation means we follow the triangle in the order (0,0, 2) to (2,0,0) to (0,1,0) and
back to the (0,0,2). The normal is

VH(x,y,z i+2j+k 1

VH@y) VETZiE Vo'
It is consistent with the orientation because if your head is in the n dirction as you walk
around the bounding curve of the triangle in the oriented direction, the triangle is on your
left hand. The curl is

curl F =

18



By Stokes’s Theorm,

I:]{F-Tds

C
= /(curlF) -ndS
S

1 2-2y 1 /e
= —j-—=({1+2j+k) v6drdy.
Jodo

1 22y
= / / —2dx dy
y=0 Jx=0

1
:/ —4+4ydy=—-4+2=-2.
y=0
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