Math 2200 § 2. Second Midterm Exam Name:
Treibergs March 17, 2011

1. (a) List the first siz terms of the sequence {a,} such that ag =5, ant1 = an+3 forn > 0.
Give a formula for a, in terms of n.
20
(b) Compute the sum Z ok
k=11
3 10

(c) Compute the sum ZZ(Z + 29).

i=1 j=1
The recursion tells us to add three each term so

ag =5, a1 =8, as =11, ag =14, a4 =17, a5 = 20,...
Thus a, =5+ 3n forn=20,1,2,3,....

1— n+1
The sum of a geometric progression with r # 1 is Z erk = w In our case, r = %
—r
k=0
and ¢ = 7. Hence
20 20 10
7 1
> a=3(3) -2r(3)
k=11 k=0 k=0
121 1
-] -3
11 1-1

1
=14 l(z 1 .00683.
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The sum of the arithmetic progression Z k=
k=1

3 10 3 10 3 10
;Z;(iwj): ZZ ZZ

(5 ()

2. Let the finite set A = {1,2,3,4}, and the infinite set B = {1,2,3,...}. Determine whether
S = A x B is countable or uncountable. If S is countable, exhibit a one-to-one correspon-
dence between the set of natural numbers and S. If S is uncountable, show that such a
one-to-one correspondence is not possible.

The set S is countable. S = {(i,j)|¢ € A, j € B} can be listed as follows. First we do
the four pairs with j = 1, then the four pairs j = 2 and so on. That is, define a function
f:{1,2,3,..} = S by

. Using this we find

fW) =10, f(2)=(2,1), fB3)=B,1), f(4) =(41),
f(5):(172)7 f(6)_(2a2)7 f(7)_(372)a f(8)_ ) ’
f9) =(1,3), f(10) =(2,3), f(11) = (3,3), f(12) = (4,3),



thus k =i+4j —4. Writing k—1=4(j — 1)+ (i — 1) shows that i — 1 = (k — 1)mod 4 and
j—1=(k—1)div 4 so (i,7) is a function of k, inverse to (i,5) — i + 4j — 4. Thus for any
pair (i,7) € S we have f(k) = (i,7) where k =i+ 4j — 4 thus f is onto. On the other hand
if f(k)=(i,j)=(,7)=f(k')thenk=i+4j—4=14i 445 —4 =k and f is one-to-one.
Thus f is a one-to-one correspondence.

(a) Find the base 6 expansion of (1421)1p.

(b) Which is greater: x = (ABCD)16 given in base 16 or y = (22233033)4 given in base

47 Why?

Repeatedly dividing by 6 we find

1421 =236-6+5

236 =39-6+2
39=6-6+4+3
6=1-640
1=0-6+1.

Hence (1421)19 = (10325)s.
To compare the numbers, we convert to the same base. But since (100)4 = (10)16, each
pair of digits in base four corresponds to a single hexadecimal digit. Thus, x is
(ABCD)16 =10-16" +11-16% + 1216 + 13
=(2-442)-4°4+(2-443)-4* +(3-440)-4>+(3-4+1)
=2.474+2.4542. 45434 +3-434+0-42+3-4+1=(22233031)4

which is less than y = (22233033)4, as seen in the last digit.
Equivalently, we just replace (A)16 = (22)4, (B)1s = (23)4, (C)16 = (30)4, (D)16 = (31)4 to
get (A B C D)1g = (22 23 30 31)4.

. Let a,b,c,m be positive integers with m > 3. Determine whether the following statements
are true or false. If true, give a proof. If false, give a counterexample.

(a) If ab=0(modm) then a = 0 (modm) or b =0 (modm).

(b) There are integers x, y that solve the equation ax + by = c.

(c) Let [a] denote the equivalence class of the integer a for congruence modulo m.
Suppose 1 < b < m. Then the m — 1 equivalence classes [b], [2b], [3b], ..., [(m — 1)b]
are pairwise disjoint.

(a.) FALSE. e.g., take a =2, b =3 and m = 6. Then 2 # 0 (mod 6) and 3 # 0 (mod 6) but
2-3=06=0(mod6).
(b.

b.) FALSE. e.g., take a = 2, b = 4 and ¢ = 3. Then there is no integer solution of
2z + 4y = 3. To see it, for any pair of integers x,y, the left side is divisible by two
2|2z + 4y, but the right side is not divisible by 2, 2t 3.

(c.) FALSE. e.g., take b=2, m =4. Then 3-2=6=1-2 (mod 4) so that [1-2] =[3-2].

. State the definition: ~ is an equivalence relation on the set S.

Let ~ be defined on the set of real numbers R by x ~ y if and only if x — y is an even
integer. Determine whether ~ is an equivalence relation. Prove your answer.

For any z,y € S, let ~ be a relation, that is, x ~ y is a two variable predicate or statement
about x and y. (Equivalently, a relation is a subset R C Sx .S such that  ~ y < (z,y) € R.)
It is an equivalence relation if three axioms hold:



(i.) ~ is reflexive: (Vz € S) = ~ x;

(ii.) ~ is symmetric: (Vz € S)(VyeS)z~y —y ~x;

(iii.) ~ is transitive: (Vx € S)(Vye S)(Vze€ S) (z~y)A(y~z2) = x ~ 2.

The relation z ~ y if and only if  — y is an even integer is an equivalence relation on R.
We verify the three axioms:

(i.) Choose z € R. Since x —x = 0 which is an even integer we have x ~ z for every x: ~
is reflexive.

(ii.) Choose z,y € R such x ~ y. This means that x —y = 2j for some integer j. However,
y —x = —27 is also an even integer. Thus y ~ x holds: ~ is symmetric.

(iii.) Choose z,y,z € R such  ~ y and y ~ z. This means that z —y = 2j and y — z = 2k
for some integers j, k. However, z —z = (z —y) + (y — 2) = 2j + 2k = 2(j + k) which is
also an even integer. Thus x ~ z holds: ~ is transitive.

(a) Find gcd(29,13).

(b) Find all integers x such that 13z = 11 (mod 29).

(c) Find all integers x such that

x = 2 (mod 3)
x =4 (mod5)
z =6 (mod7)

(a.) The Euclidean Algorithn gives

29=2-13+3
13=4-3+1
3=3-140

Hence ged(29,13) = 1.
(b.) Substituting from the Euclidean Algorithm we find

=13-4-3=13-4-(29—-2-13)=9-13 —4-29.

so 13-9 = 1 (mod 29). Multiplying by 11 we find the solution 13 - 99 = 11 (mod 29).
Thus all solutions satisfy z = 99 = 12 (mod 29). Equivalently, all solutions are given by
xr = 12 4 29t where ¢ is any integer.

(c.) We find the solution using the Chinese Remainder Theorem. For this theorem to apply,
we require that m; = 3, me = 5 and m3 = 7 be pairwise relatively prime. But since m; are
distinct primes, this is true. The solution is unique modulo m = mymomg =3-5-7 = 105.
Since each residue is as large as possible, we may guess the answer to be 104 (and we would
be correct! Check!)

m

Proceeding in the usual manner, we compute M; = -. We get M; = mams = 35
2 (mod 3). Hence its inverse y; = 2 since 2-2 =1 (mod 3). Similarly, My = myms = 21
1 (mod 5). Hence its inverse yo = 1 since 1 -1 =1 (mod 5). Finally, M3 = mimg = 15 =
1 (mod 7). Hence its inverse y3 = 1 since 1 -1 =1 (mod 7). Then the solution is given by

x=a1 My + asMoys +asMsys =2-35-2+4-21-14+6-15-1=314.

It follows that x = 314 = 104 (mod 105). In other words, all solutions are given by
x = 104 + 105t where t € Z.



