1. (a) List the first six terms of the sequence $\{a_n\}$ such that $a_0 = 5$, $a_{n+1} = a_n + 3$ for $n \ge 0$. Give a formula for a_n in terms of n.

(b) Compute the sum
$$\sum_{k=11}^{20} \frac{7}{2^k}$$
.
(c) Compute the sum $\sum_{i=1}^{3} \sum_{j=1}^{10} (i+2j)$

The recursion tells us to add three each term so

$$a_0 = 5, a_1 = 8, a_2 = 11, a_3 = 14, a_4 = 17, a_5 = 20, \dots$$

Thus $a_n = 5 + 3n$ for $n = 0, 1, 2, 3, \dots$

The sum of a geometric progression with $r \neq 1$ is $\sum_{k=0}^{n} cr^{k} = \frac{c(1-r^{n+1})}{1-r}$. In our case, $r = \frac{1}{2}$ and c = 7. Hence

$$\sum_{k=11}^{20} \frac{7}{2^k} = \sum_{k=0}^{20} 7\left(\frac{1}{2}\right)^k - \sum_{k=0}^{10} 7\left(\frac{1}{2}\right)^k$$
$$= \frac{7\left[1 - \left(\frac{1}{2}\right)^{21}\right]}{1 - \frac{1}{2}} - \frac{7\left[1 - \left(\frac{1}{2}\right)^{11}\right]}{1 - \frac{1}{2}}$$
$$= 14\left[\left(\frac{1}{2}\right)^{11} - \left(\frac{1}{2}\right)^{21}\right] = .00683.$$

The sum of the arithmetic progression $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$. Using this we find

$$\sum_{i=1}^{3} \sum_{j=1}^{10} (i+2j) = \left(\sum_{i=1}^{3} \sum_{j=1}^{10} i\right) + 2\left(\sum_{i=1}^{3} \sum_{j=1}^{10} j\right)$$
$$= 10\left(\sum_{i=1}^{3} i\right) + 6\left(\sum_{j=1}^{10} j\right)$$
$$= \frac{10 \cdot 3 \cdot 4}{2} + \frac{6 \cdot 10 \cdot 11}{2} = 390.$$

2. Let the finite set $A = \{1, 2, 3, 4\}$, and the infinite set $B = \{1, 2, 3, ...\}$. Determine whether $S = A \times B$ is countable or uncountable. If S is countable, exhibit a one-to-one correspondence between the set of natural numbers and S. If S is uncountable, show that such a one-to-one correspondence is not possible.

The set S is countable. $S = \{(i, j) | i \in A, j \in B\}$ can be listed as follows. First we do the four pairs with j = 1, then the four pairs j = 2 and so on. That is, define a function $f : \{1, 2, 3, \ldots\} \to S$ by

$$f(1) = (1,1), \ f(2) = (2,1), \ f(3) = (3,1), \ f(4) = (4,1),$$

$$f(5) = (1,2), \ f(6) = (2,2), \ f(7) = (3,2), \ f(8) = (4,2),$$

$$f(9) = (1,3), \ f(10) = (2,3), \ f(11) = (3,3), \ f(12) = (4,3), \dots$$

thus k = i + 4j - 4. Writing k - 1 = 4(j - 1) + (i - 1) shows that $i - 1 = (k - 1) \mod 4$ and $j - 1 = (k - 1) \dim 4$ so (i, j) is a function of k, inverse to $(i, j) \mapsto i + 4j - 4$. Thus for any pair $(i, j) \in S$ we have f(k) = (i, j) where k = i + 4j - 4 thus f is onto. On the other hand if f(k) = (i, j) = (i', j') = f(k') then k = i + 4j - 4 = i' + 4j' - 4 = k' and f is one-to-one. Thus f is a one-to-one correspondence.

- 3. (a) Find the base 6 expansion of $(1421)_{10}$.
 - (b) Which is greater: $x = (ABCD)_{16}$ given in base 16 or $y = (22233033)_4$ given in base 4? Why?

Repeatedly dividing by 6 we find

$$1421 = 236 \cdot 6 + 5$$

$$236 = 39 \cdot 6 + 2$$

$$39 = 6 \cdot 6 + 3$$

$$6 = 1 \cdot 6 + 0$$

$$1 = 0 \cdot 6 + 1.$$

Hence $(1421)_{10} = (10325)_6$.

To compare the numbers, we convert to the same base. But since $(100)_4 = (10)_{16}$, each pair of digits in base four corresponds to a single hexadecimal digit. Thus, x is

$$(ABCD)_{16} = 10 \cdot 16^3 + 11 \cdot 16^2 + 12 \cdot 16 + 13$$

= $(2 \cdot 4 + 2) \cdot 4^6 + (2 \cdot 4 + 3) \cdot 4^4 + (3 \cdot 4 + 0) \cdot 4^2 + (3 \cdot 4 + 1)$
= $2 \cdot 4^7 + 2 \cdot 4^6 + 2 \cdot 4^5 + 3 \cdot 4^4 + 3 \cdot 4^3 + 0 \cdot 4^2 + 3 \cdot 4 + 1 = (22233031)_4$

which is less than $y = (22233033)_4$, as seen in the last digit.

Equivalently, we just replace $(A)_{16} = (22)_4$, $(B)_{16} = (23)_4$, $(C)_{16} = (30)_4$, $(D)_{16} = (31)_4$ to get $(A \ B \ C \ D)_{16} = (22 \ 23 \ 30 \ 31)_4$.

- 4. Let a, b, c, m be positive integers with $m \ge 3$. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) If $ab \equiv 0 \pmod{m}$ then $a \equiv 0 \pmod{m}$ or $b \equiv 0 \pmod{m}$.
 - (b) There are integers x, y that solve the equation ax + by = c.
 - (c) Let [a] denote the equivalence class of the integer a for congruence modulo m. Suppose $1 \le b < m$. Then the m - 1 equivalence classes [b], [2b], [3b], ..., [(m - 1)b] are pairwise disjoint.
 - (a.) FALSE. *e.g.*, take a = 2, b = 3 and m = 6. Then $2 \neq 0 \pmod{6}$ and $3 \neq 0 \pmod{6}$ but $2 \cdot 3 = 6 \equiv 0 \pmod{6}$.

(b.) FALSE. *e.g.*, take a = 2, b = 4 and c = 3. Then there is no integer solution of 2x + 4y = 3. To see it, for any pair of integers x, y, the left side is divisible by two 2 | 2x + 4y, but the right side is not divisible by 2, $2 \nmid 3$.

(c.) FALSE. *e.g.*, take b = 2, m = 4. Then $3 \cdot 2 = 6 \equiv 1 \cdot 2 \pmod{4}$ so that $[1 \cdot 2] = [3 \cdot 2]$.

5. State the definition: \sim is an equivalence relation on the set S.

Let \sim be defined on the set of real numbers **R** by $x \sim y$ if and only if x - y is an even integer. Determine whether \sim is an equivalence relation. Prove your answer.

For any $x, y \in S$, let \sim be a relation, that is, $x \sim y$ is a two variable predicate or statement about x and y. (Equivalently, a relation is a subset $\mathcal{R} \subseteq S \times S$ such that $x \sim y \leftrightarrow (x, y) \in \mathcal{R}$.) It is an *equivalence relation* if three axioms hold: (i.) ~ is reflexive: $(\forall x \in S) \ x \sim x;$

(ii.) ~ is symmetric: $(\forall x \in S) (\forall y \in S) x \sim y \rightarrow y \sim x;$

(iii.) ~ is transitive: $(\forall x \in S) (\forall y \in S) (\forall z \in S) (x \sim y) \land (y \sim z) \to x \sim z.$

The relation $x \sim y$ if and only if x - y is an even integer is an equivalence relation on **R**. We verify the three axioms:

(i.) Choose $x \in \mathbf{R}$. Since x - x = 0 which is an even integer we have $x \sim x$ for every x: ~ is reflexive.

(ii.) Choose $x, y \in \mathbf{R}$ such $x \sim y$. This means that x - y = 2j for some integer j. However, y - x = -2j is also an even integer. Thus $y \sim x$ holds: \sim is symmetric.

(iii.) Choose $x, y, z \in \mathbf{R}$ such $x \sim y$ and $y \sim z$. This means that x - y = 2j and y - z = 2k for some integers j, k. However, x - z = (z - y) + (y - z) = 2j + 2k = 2(j + k) which is also an even integer. Thus $x \sim z$ holds: \sim is transitive.

- 6. (a) Find gcd(29, 13).
 - (b) Find all integers x such that $13x \equiv 11 \pmod{29}$.
 - (c) Find all integers x such that

$$x \equiv 2 \pmod{3}$$
$$x \equiv 4 \pmod{5}$$
$$x \equiv 6 \pmod{7}$$

(a.) The Euclidean Algorithm gives

$$29 = 2 \cdot 13 + 3$$

$$13 = 4 \cdot 3 + 1$$

$$3 = 3 \cdot 1 + 0$$

Hence gcd(29, 13) = 1.

(b.) Substituting from the Euclidean Algorithm we find

$$1 = 13 - 4 \cdot 3 = 13 - 4 \cdot (29 - 2 \cdot 13) = 9 \cdot 13 - 4 \cdot 29.$$

so $13 \cdot 9 \equiv 1 \pmod{29}$. Multiplying by 11 we find the solution $13 \cdot 99 \equiv 11 \pmod{29}$. Thus all solutions satisfy $x \equiv 99 \equiv 12 \pmod{29}$. Equivalently, all solutions are given by x = 12 + 29t where t is any integer.

(c.) We find the solution using the Chinese Remainder Theorem. For this theorem to apply, we require that $m_1 = 3$, $m_2 = 5$ and $m_3 = 7$ be pairwise relatively prime. But since m_i are distinct primes, this is true. The solution is unique modulo $m = m_1 m_2 m_3 = 3 \cdot 5 \cdot 7 = 105$. Since each residue is as large as possible, we may guess the answer to be 104 (and we would be correct! Check!)

Proceeding in the usual manner, we compute $M_i = \frac{m}{m_i}$. We get $M_1 = m_2m_3 = 35 \equiv 2 \pmod{3}$. Hence its inverse $y_1 = 2 \operatorname{since} 2 \cdot 2 \equiv 1 \pmod{3}$. Similarly, $M_2 = m_1m_3 = 21 \equiv 1 \pmod{5}$. Hence its inverse $y_2 = 1 \operatorname{since} 1 \cdot 1 \equiv 1 \pmod{5}$. Finally, $M_3 = m_1m_2 = 15 \equiv 1 \pmod{7}$. Hence its inverse $y_3 = 1 \operatorname{since} 1 \cdot 1 \equiv 1 \pmod{7}$. Then the solution is given by

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3 = 2 \cdot 35 \cdot 2 + 4 \cdot 21 \cdot 1 + 6 \cdot 15 \cdot 1 = 314$$

It follows that $x \equiv 314 \equiv 104 \pmod{105}$. In other words, all solutions are given by x = 104 + 105t where $t \in \mathbb{Z}$.