
Math 2200 § 2.
Treibergs

Second Midterm Exam Name:
March 17, 2011

1. (a) List the first six terms of the sequence {an} such that a0 = 5, an+1 = an +3 for n ≥ 0.
Give a formula for an in terms of n.

(b) Compute the sum
20∑

k=11

7
2k

.

(c) Compute the sum
3∑

i=1

10∑
j=1

(i + 2j).

The recursion tells us to add three each term so

a0 = 5, a1 = 8, a2 = 11, a3 = 14, a4 = 17, a5 = 20, . . .

Thus an = 5 + 3n for n = 0, 1, 2, 3, . . ..

The sum of a geometric progression with r 6= 1 is
n∑

k=0

crk =
c(1− rn+1)

1− r
. In our case, r = 1

2

and c = 7. Hence
20∑

k=11

7
2k

=
20∑

k=0

7
(

1
2

)k

−
10∑

k=0

7
(

1
2

)k

=
7
[
1−

(
1
2

)21]
1− 1

2

−
7
[
1−

(
1
2

)11]
1− 1

2

= 14

[(
1
2

)11

−
(

1
2

)21
]

= .00683.

The sum of the arithmetic progression
n∑

k=1

k =
n(n + 1)

2
. Using this we find

3∑
i=1

10∑
j=1

(i + 2j) =

 3∑
i=1

10∑
j=1

i

+ 2

 3∑
i=1

10∑
j=1

j


= 10

(
3∑

i=1

i

)
+ 6

 10∑
j=1

j


=

10 · 3 · 4
2

+
6 · 10 · 11

2
= 390.

2. Let the finite set A = {1, 2, 3, 4}, and the infinite set B = {1, 2, 3, . . .}. Determine whether
S = A × B is countable or uncountable. If S is countable, exhibit a one-to-one correspon-
dence between the set of natural numbers and S. If S is uncountable, show that such a
one-to-one correspondence is not possible.

The set S is countable. S = {(i, j)|i ∈ A, j ∈ B} can be listed as follows. First we do
the four pairs with j = 1, then the four pairs j = 2 and so on. That is, define a function
f : {1, 2, 3, . . .} → S by

f(1) = (1, 1), f(2) = (2, 1), f(3) = (3, 1), f(4) = (4, 1),
f(5) = (1, 2), f(6) = (2, 2), f(7) = (3, 2), f(8) = (4, 2),
f(9) = (1, 3), f(10) = (2, 3), f(11) = (3, 3), f(12) = (4, 3), . . .
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thus k = i + 4j− 4. Writing k− 1 = 4(j− 1) + (i− 1) shows that i− 1 = (k− 1)mod 4 and
j − 1 = (k − 1)div 4 so (i, j) is a function of k, inverse to (i, j) 7→ i + 4j − 4. Thus for any
pair (i, j) ∈ S we have f(k) = (i, j) where k = i + 4j − 4 thus f is onto. On the other hand
if f(k) = (i, j) = (i′, j′) = f(k′) then k = i + 4j − 4 = i′ + 4j′ − 4 = k′ and f is one-to-one.
Thus f is a one-to-one correspondence.

3. (a) Find the base 6 expansion of (1421)10.
(b) Which is greater: x = (ABCD)16 given in base 16 or y = (22233033)4 given in base

4? Why?

Repeatedly dividing by 6 we find

1421 = 236 · 6 + 5
236 = 39 · 6 + 2
39 = 6 · 6 + 3
6 = 1 · 6 + 0
1 = 0 · 6 + 1.

Hence (1421)10 = (10325)6.

To compare the numbers, we convert to the same base. But since (100)4 = (10)16, each
pair of digits in base four corresponds to a single hexadecimal digit. Thus, x is

(ABCD)16 = 10 · 163 + 11 · 162 + 12 · 16 + 13

= (2 · 4 + 2) · 46 + (2 · 4 + 3) · 44 + (3 · 4 + 0) · 42 + (3 · 4 + 1)

= 2 · 47 + 2 · 46 + 2 · 45 + 3 · 44 + 3 · 43 + 0 · 42 + 3 · 4 + 1 = (22233031)4

which is less than y = (22233033)4, as seen in the last digit.

Equivalently, we just replace (A)16 = (22)4, (B)16 = (23)4, (C)16 = (30)4, (D)16 = (31)4 to
get (A B C D)16 = (22 23 30 31)4.

4. Let a, b, c, m be positive integers with m ≥ 3. Determine whether the following statements
are true or false. If true, give a proof. If false, give a counterexample.

(a) If ab ≡ 0 (mod m) then a ≡ 0 (mod m) or b ≡ 0 (mod m).
(b) There are integers x, y that solve the equation ax + by = c.

(c) Let [a] denote the equivalence class of the integer a for congruence modulo m.
Suppose 1 ≤ b < m. Then the m− 1 equivalence classes [b], [2b], [3b], . . . , [(m− 1)b]
are pairwise disjoint.

(a.) FALSE. e.g., take a = 2, b = 3 and m = 6. Then 2 6≡ 0 (mod 6) and 3 6≡ 0 (mod 6) but
2 · 3 = 6 ≡ 0 (mod 6).

(b.) FALSE. e.g., take a = 2, b = 4 and c = 3. Then there is no integer solution of
2x + 4y = 3. To see it, for any pair of integers x, y, the left side is divisible by two
2 | 2x + 4y, but the right side is not divisible by 2, 2 - 3.

(c.) FALSE. e.g., take b = 2, m = 4. Then 3 · 2 = 6 ≡ 1 · 2 (mod 4) so that [1 · 2] = [3 · 2].

5. State the definition: ∼ is an equivalence relation on the set S.

Let ∼ be defined on the set of real numbers R by x ∼ y if and only if x − y is an even
integer. Determine whether ∼ is an equivalence relation. Prove your answer.

For any x, y ∈ S, let ∼ be a relation, that is, x ∼ y is a two variable predicate or statement
about x and y. (Equivalently, a relation is a subsetR ⊆ S×S such that x ∼ y ↔ (x, y) ∈ R.)
It is an equivalence relation if three axioms hold:

2



(i.) ∼ is reflexive: (∀x ∈ S) x ∼ x;

(ii.) ∼ is symmetric: (∀x ∈ S) (∀y ∈ S) x ∼ y → y ∼ x;

(iii.) ∼ is transitive: (∀x ∈ S) (∀y ∈ S) (∀z ∈ S) (x ∼ y) ∧ (y ∼ z)→ x ∼ z.

The relation x ∼ y if and only if x − y is an even integer is an equivalence relation on R.
We verify the three axioms:

(i.) Choose x ∈ R. Since x− x = 0 which is an even integer we have x ∼ x for every x: ∼
is reflexive.

(ii.) Choose x, y ∈ R such x ∼ y. This means that x− y = 2j for some integer j. However,
y − x = −2j is also an even integer. Thus y ∼ x holds: ∼ is symmetric.

(iii.) Choose x, y, z ∈ R such x ∼ y and y ∼ z. This means that x− y = 2j and y − z = 2k
for some integers j, k. However, x − z = (z − y) + (y − z) = 2j + 2k = 2(j + k) which is
also an even integer. Thus x ∼ z holds: ∼ is transitive.

6. (a) Find gcd(29, 13).

(b) Find all integers x such that 13x ≡ 11 (mod 29).

(c) Find all integers x such that

x ≡ 2 (mod 3)
x ≡ 4 (mod 5)
x ≡ 6 (mod 7)

(a.) The Euclidean Algorithn gives

29 = 2 · 13 + 3
13 = 4 · 3 + 1
3 = 3 · 1 + 0

Hence gcd(29, 13) = 1.

(b.) Substituting from the Euclidean Algorithm we find

1 = 13− 4 · 3 = 13− 4 · (29− 2 · 13) = 9 · 13− 4 · 29.

so 13 · 9 ≡ 1 (mod 29). Multiplying by 11 we find the solution 13 · 99 ≡ 11 (mod 29).
Thus all solutions satisfy x ≡ 99 ≡ 12 (mod 29). Equivalently, all solutions are given by
x = 12 + 29t where t is any integer.

(c.) We find the solution using the Chinese Remainder Theorem. For this theorem to apply,
we require that m1 = 3, m2 = 5 and m3 = 7 be pairwise relatively prime. But since mi are
distinct primes, this is true. The solution is unique modulo m = m1m2m3 = 3 · 5 · 7 = 105.
Since each residue is as large as possible, we may guess the answer to be 104 (and we would
be correct! Check!)

Proceeding in the usual manner, we compute Mi = m
mi

. We get M1 = m2m3 = 35 ≡
2 (mod 3). Hence its inverse y1 = 2 since 2 · 2 ≡ 1 (mod 3). Similarly, M2 = m1m3 = 21 ≡
1 (mod 5). Hence its inverse y2 = 1 since 1 · 1 ≡ 1 (mod 5). Finally, M3 = m1m2 = 15 ≡
1 (mod 7). Hence its inverse y3 = 1 since 1 · 1 ≡ 1 (mod 7). Then the solution is given by

x = a1M1y1 + a2M2y2 + a3M3y3 = 2 · 35 · 2 + 4 · 21 · 1 + 6 · 15 · 1 = 314.

It follows that x ≡ 314 ≡ 104 (mod 105). In other words, all solutions are given by
x = 104 + 105t where t ∈ Z.
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