
Math 2200 § 2.
Treibergs −−σιι

Final Exam Name: Sample
March 7, 2011

Sample Final Questions.

1. Show using induction that 5 | (7n − 2n) for every positive integer n.

2. Prove that n! > 2n for all integers n ≥ 4. [From miterm for Math 3210-2, Sept. 16, 2009]

3. Prove that for all n ∈ N,
n∑

i=1

1
i(i+ 1)

=
n

n+ 1
.

4. Find all pairs of integers x, y which satisfy the diophantine equation

50x− 65y = 75.

5. Let p be prime. Then for any integer x, xp − x is divisible by p.

6. Let a1, a2, . . . , an be positive real numbers. The Arithmetic Mean of these numbers is
defined to be

An =
1
n

n∑
i=1

ai.

The Geometric Mean of these numbers is defined by

Gn =

(
n∏

i=1

ai

) 1
n

.

Show that for all n ≥ 1, Gn ≤ An.

7. Show that
Sn =

∑
{a1,a2,...,ak}⊆{1,2,...,n}

1
a1a2 · · · ak

= n

where the sum is taken over all nonempty subsets of the set of n smallest positive integers.

8. A knight on a chessboard can move one space horizontally (in either direction) and then
two spaces vertically (in either direction) or two spaces horizontally (in either direction) and
then one space vertically (in either direction). Suppose that we have an infinite chessboard
made up of all squares (m,n) where m and n are nonnegative integers. Show that a knight
starting at (0, 0) and travelling within the chessboard can reach any square of the chessboard
using a finite number of moves.

9. Determine which amounts of postage can be formed using just 4 cent and 7 cent stamps.

10. Let fn be the n-th Fibonacci number. Show that for positive integer n we have

f2
1 + f2

2 + · · ·+ f2
n = fnfn+1.

11. Let fn be the n-th Fibonacci number. Show that for positive integer n we have

Sn = f0 − f1 + f2 − · · · − f2n−1 + f2n = f2n−1 − 1
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12. Let fn be the n-th Fibonacci number. Show that for positive integer n we have(
1 1
1 0

)n

=
(
fn+1 fn

fn fn−1

)
.

13. Show that the n-th derivative fn(x) =
dn

dxn

(
xex
)

= (x+ n)ex for all positive integers n.

14. Find the number of integers between 1000 and 9999 inclusive that are divisible by 7 or are
not divisible by 11.

15. Suppose that there are finite sets A1, A2, . . . , An. Then the number of elements in the
union is given by the inclusion-exclusion formula

|A1 ∪ · · · ∪An| =
n∑

k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

|Ai1 ∩Ai2 ∩ · · · ∩Aik
|

where the second sum is over all k element subsets {i1, i2, . . . , ik} ⊆ {1, 2, 3, . . . , n}. Prove
the formula using induction. (Another proof is given in §7.5.)

16. Show that for every positive integer n, ¬(p1∨p2∨· · ·∨pn) is equivalent to ¬p1∧¬p2∧· · ·∧¬pn

where p1, p2,. . . , pn are propositions.

17. Suppose that you begin with a pile of n stones and split the pile into n piles of one stone
each by successively splitting a pile of stones into two smaller piles. Each time you split a
pile, you multiply the the number of stones in each of the smaller piles you form, so that if
the smaller piles have r and s stones in them, you compute rs. Show that no matter how
you split the piles, the sum of the products computed at each step equals to 1

2n(n− 1).

18. Let d be as positive integer. Show that in any group of d + 1 not necessarily consecutive
integers, there must be two with exactly the same remainder when divided by d.

19. Suppose that there are n ≥ 2 people at a party. Show that there must be at least two of
them who know the same number of people at the party.

Questions from Math 3070-1 exam of Jan. 30,2008.

20. A standard deck of 52 cards consists of four suits {♣,♦,♥,♠}. Each suit has 13 different
kinds of cards {2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K,A}. How many two card hands are there such
that both cards are of the same suit or of the same kind?

21. A bag contains 26 scrabble tiles, each labeled by a different letters of the alphabet.

(a) How many different five letter words can be selected from the bag (without replace-
ment)?

(b) How many of these words are in alphabetical order?

(c) How many of these contain at least one vowel {A,E, I,O,U}?
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Solutions.

1. Show using induction that 5 | (7n − 2n) for every positive integer n.

Let P (n) denote the statement 5 | (7n − 2n). For the induction, we need to show P (1) and
P (k)→ P (k + 1) for all k ≥ 1.

For n = 1, 71 − 21 = 7− 2 = 5 which is divisible by 5. Hence P (1) is true.

Assume for some positive integer k, 5 divides 7k − 2k. Then

7k+1 − 2k+1 = 7 · 7k − 2 · 2k = 5 · 7k + 2 · (7k − 2k)

5 divides the first term and by the induction hypothesis, P (k), it divides the second term
as well and thus the sum. Hence we conclude P (k + 1), and the induction is complete.

2. Prove that n! > 2n for all integers n ≥ 4. [From miterm for Math 3210-2, Sept. 16, 2009]

Use induction on n. In the base case n = 4, then
Lhs = 4! = 4 · 3 · 2 · 1 = 24 > 16 = 24 = Rhs.

Induction case. Assume that for any n ≥ 4 we have n! > 2n. Then by the induction
hypothesis and n+ 1 ≥ 2,

(n+ 1)! = (n+ 1)n! > (n+ 1)2n ≥ 2 · 2n = 2n+1.

3. Prove that for all positive integers n,
n∑

i=1

1
i(i+ 1)

=
n

n+ 1
.

Proof by induction. In the base case, n = 1, the left side is
∑n

i=1
1

i(i+1) = 1
1·2 = 1

2 . The
right side is n

n+1 = 1
1+1 = 1

2 hence equality holds.

The induction step is to prove for every n ≥ 1, the statement for n+ 1 is true assuming it’s
true for n. But

n+1∑
i=1

1
i(i+ 1)

=
1

(n+ 1)(n+ 2)
+

n∑
i=1

1
i(i+ 1)

Now use the induction hypothesis.

=
1

(n+ 1)(n+ 2)
+

n

n+ 1
=

1 + n(n+ 2)
(n+ 1)(n+ 2)

=
(n+ 1)2

(n+ 1)(n+ 2)
=

n+ 1
(n+ 1) + 1

.

4. Find all pairs of integers x, y which satisfy the diophantine equation

50x− 65y = 75. (1)

Note that 50 = 2 · 52 and 65 = 5 · 13 so d = gcd(50, 65) = 5. Since 5 divides the left hand
side, there is no solution of (1) unless 5 divides the right side too, which it does. Dividing
by d we get

10x− 13y = 15, (2)

whose solutions are the solutions of (1). Now 10 and −13 are relatively prime so there are
numbers ` and m so that 10`− 13m = 1. To find ` and m, we run the Euclidean Algorithm

13 = 1 · 10 + 3
10 = 3 · 3 + 1
3 = 3 · 1 + 0
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Substituting, we find

1 = 10− 3 · 3 = 10− 3 · (13− 10) = 4 · 10− 3 · 13,

so ` = 4 and m = 3. Multiplying by 15 we find

10 · 60− 13 · 45 = 15.

Thus one solution of the diophantine equation is x0 = 60 and y0 = 45. Suppose (x, y) is
another solution of (2). Then

10(x− x0) = 13(y − y0)

Since 10 and 13 are relatively prime, 10 | (y−y0) so there is an integer t so that y = y0 +10t.
Then 10(x− x0) = 130t or x− x0 = 13t. It follows that other solutions have the form

x = 60 + 13t
y = 45 + 10t.

(3)

But by substituting (3) into (2), we see that this is a solution for any t. Therefore all
possible solutions of (2), and hence of (1) are given by (3).

5. Let p be prime. Then for any integer x, xp − x is divisible by p.

If p = 2 then x2−x = x(x− 1) contains an even factor since either x or x− 1 is even. Thus
we may assume p is an odd prime, and x ≥ 0, since for odd p, by replacing x by −x yields
−(xp − x) = (−x)p − (−x) which has the same divisibility by p as xp − x. The statement
is true for x = 0 and x = 1. We argue by induction on x.

Assume the statement is true for any positive integer x. Observe that

(x+ 1)p =
p∑

j=0

(
p

j

)
xj

But the binomial coefficients
(
p
1

)
,
(
p
2

)
, . . .

(
p

p−1

)
are all divisible by p because if 1 ≤ j ≤ p− 1

then the integer binomial coefficient(
p

j

)
=
p(p− 1) · · · (p− j + 1)

j(j − 1) · · · 2 · 1

has a single largest prime factor p in the numerator and no prime factor in the denominator
as large as p. Hence p |

(
p
j

)
. Thus, by the induction hypothesis,

(x+ 1)p ≡ xp + 1 ≡ x+ 1 (mod p),

and the formula holds also for x+ 1: the induction is complete.

6. Let a1, a2, . . . , an be positive real numbers. The Arithmetic Mean of these numbers is defined
to be

An =
1
n

n∑
i=1

ai.

The Geometric Mean of these numbers is defined by

Gn =

(
n∏

i=1

ai

) 1
n

.
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Show that for all n ≥ 1, Gn ≤ An.

The trick that makes the argument easier is to double the number of terms each induction
step rather than just increasing the number by one. Then, by a simple padding argument,
the general result follows. We argue by induction that the inequality is true when n = 2k

is a power of two. In the base case k = 0 or n = 1 = 20, A1 = a1 = G1 and so G1 = A1.

We illustrate the cases n = 21 and n = 22 to make the general induction step clearer. If
there are two numbers α and β, the basic squaring inequality is

0 ≤ (
√
α−

√
β)2 = α− 2

√
αβ + β

from which
G2 =

√
αβ ≤ 1

2
(α+ β) = A2

follows.

If there are four numbers α, β, γ and δ, apply the basic squaring inequality twice

G4 = (αβγδ)
1
4 =

(√
αβ
√
γδ
) 1

2

≤ 1
2

(√
αβ +

√
γδ
)

≤ 1
2

(
α+ β

2
+
γ + δ

2

)
=

1
4

(α+ β + γ + δ) = A4.

Now, for any n ≥ 0, assume the result is true for 2n terms: G2n ≤ A2n . Applying first the
squaring inequality and then the induction hypothesis to both to the first 2n numbers and
also to the second 2n numbers

G2n+1 =

2n+1∏
i=1

ai

 1
2n+1

=

( 2n∏
i=1

ai

) 1
2n
 2n+1∏

j=2n+1

aj

 1
2n


1
2

≤ 1
2

( 2n∏
i=1

ai

) 1
2n

+

 2n+1∏
j=2n+1

aj

 1
2n


≤ 1
2

 1
2n

(
2n∑
i=1

ai

)
+

1
2n

 2n+1∑
j=2n+1

aj


=

1
2n+1

2n+1∑
i=1

ai = A2n+1 .

To illustrate the padding, if there are three numbers, then use A3 as a fourth and then the
Arithmetic-Geometric inequality for four numbers gives

G
3
4
3 A

1
4
3 = (αβγA3)

1
4 ≤ 1

4
(α+ β + γ +A3) =

1
4

(3A3 +A3) = A3

from which G3 ≤ A3 follows. In general, if 2k ≤ n < 2k+1, we pad the n numbers with
2k+1 − n copies of An and use the Arithmetic-Geometric inequality for 2k+1 numbers

G
n

2k+1
n A

2k+1−n

2k+1
n =

(
A2k+1−n

n

n∏
i=1

ai

) 1
2k+1

≤ 1
2k+1

(
(2k+1 − n)An + nAn

)
= An

from which Gn ≤ An follows.
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7. Show that
Sn =

∑
{a1,a2,...,ak}⊆{1,2,...,n}

1
a1a2 · · · ak

= n

where the sum is taken over all nonempty subsets of the set of n smallest positive integers.

We argue by induction on n. For the base case when n = 1, the only subset is {1} ⊆ {1},
so the sum is 1/1 which equals n = 1.

Assume for any n ≥ 1 that the statement is true for sums over subsets of the first n integers.
Now, partition the sum into three parts. A subset of {1, 2, . . . , n, n+1} either is the singleton
set {n+ 1}, a subset that contains n+ 1 but has also another element, or is a subset that
does not contain n+ 1. In the latter case, the subset may be viewed as a nonempty subset
of {1, 2, . . . , n}. Thus

Sn+1 =
∑

{a1,a2,...,ak}⊆{1,2,...,n+1}

1
a1a2 · · · ak

=
∑

{n+1}⊆{1,2,...,n+1}

1
n+ 1

+
∑

{a1,a2,...,ak,n+1}⊆{1,2,...,n+1}

1
a1a2 · · · ak(n+ 1)

+
∑

{a1,a2,...,ak}⊆{1,2,...,n}

1
a1a2 · · · ak

Noting that there is one term in the first sum, that all second sum subsets are of the form
of T ∪ {n+ 1} where T = {a1, a2, . . . , ak} ⊆ {1, 2, . . . , n} so that n+ 1 can be factored out
of the sum, we see that using the induction hypothesis on the second and third terms

Sn+1 =
1

n+ 1
+

1
n+ 1

∑
{a1,a2,...,ak}⊆{1,2,...n}

1
a1a2 · · · ak

+
∑

{a1,a2,...,ak}⊆{1,2,...,n}

1
a1a2 · · · ak

=
1

n+ 1
+

n

n+ 1
+ n = n+ 1.

The induction step is complete.

8. A knight on a chessboard can move one space horizontally (in either direction) and then two
spaces vertically (in either direction) or two spaces horizontally (in either direction) and then
one space vertically (in either direction). Suppose that we have an infinite chessboard made
up of all squares (m,n) where m and n are nonnegative integers. Show that a knight starting
at (0, 0) and travelling within the chessboard can reach any square of the chessboard using
a finite number of moves.

We argue using induction on m+ n which runs through all nonnegative integers for chess-
board squares. A knight move consists of adding one of eight vectors to the current position.
These eight are (±2,±1) or (±1,±2). The knight may not move off of the board. The state-
ment to be verified is

P(k) = “Starting from (0, 0), the knight can reach the square (m,n) where m+ n = k by
using at most `k = 3k moves on the chessboard.”

The base case is k = 0. The knight need not move to reach the only square with m+n = 0,
namely (0, 0). Hence `0 = 0.

For any k ≥ 0, the induction hypothesis is that we assume that the knight can reach any
square (m,n) on the diagonal m + n = k in at most `k = 3k moves. Consider any square
(m′, n′) where m′ + n′ = k + 1. Since the sum is positive, one of the numbers must be
positive. In case m′ > 0, we know that m′ − 1 is nonnegative and (m′ − 1, n′) is a square
on the (m′ − 1) + n′ = k diagonal. By the induction hypothesis, it takes at most `k = 3k
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moves to reach the square (m′− 1, n′). It takes at most three more moves to reach (m′, n′),
namely (1, 2) then (2,−1) then (−2,−1). The positions of the knight are

(m′ − 1, n′)→ (m′, n′ + 2)→ (m′ + 2, n′ + 1)→ (m′, n′).

Note that the x-coordinates 0 ≤ m′ − 1 ≤ m′ ≤ m′ + 2 are all nonnegative and the y-
coordinates 0 ≤ n′ ≤ n′ + 1 ≤ n′ + 2 are also nonnegative.

In case m′ = 0 we have n′ > 0, thus n′−1 is nonnegative and (m′, n′−1) is a square on the
m′+ (n′−1)′ = k diagonal. By the induction hypothesis, it takes at most `k = 3k moves to
reach the square (m′, n′ − 1). It takes at most three more moves to reach (m′, n′), namely
(2, 1) then (−1, 2) then (−1,−2). The positions of the knight are

(m′, n′ − 1)→ (m′ + 2, n′)→ (m′ + 1, n′ + 2)→ (m′, n′).

Note that the x-coordinates 0 ≤ m′ ≤ m′ + 1 ≤ m′ + 2 are all nonnegative and the y-
coordinates 0 ≤ n′ − 1 ≤ n′ ≤ n′ + 2 are also nonnegative.

In both cases, these moves stay in the board. Also, there were three additional moves, so
the total is at most `k+1 = `k + 3 = 3k + 3 = 3(k + 1). The induction is complete.

The number of moves to reach a square may well be less, for example it takes one move to
reach (2, 1) where 2 + 1 = 3 but `3 = 3 · 3 = 9. A more complicated induction may yield a
sharper estimate.

9. Determine which amounts of postage can be formed using just 4 cent and 7 cent stamps.

We solved the Diophantine Equation before, and checked whether any solutions are pairs
of nonnegative integers. This time we use strong induction. The first step is to try some
sums and guess which values are possible.

We get multiples of four: 0, 4, 8, 12, 16, 20, 24, 28. . . ; with one seven cent stamp: 7, 11, 15,
19, 23, 27. . . ; with two seven cent stamps; 14, 18, 22, 28,. . . ; with three seven cent stamps:
21, 28,. . . ; with four seven cent stamps: 28,. . . . It is plausible to guess that the amounts
of postage possible are 0, 4, 7, 8, 11, 12, 14, 15, 16 and all k ≥ 18. Let us prove the result
using strong induction. The smaller values occur in the table, so are possible. It remains
to prove for k ≥ 18 the proposition

P(k) = “k cents postage can be formed using just 4 cent and 7 cent stamps.”

The base cases are the four statements P(18), P(19), P(20) and P(21). The nonnegative
solution of 4x+ 7y = k for k = 18 is (1, 2); for k = 19 is (3, 1); for k = 20 is (5, 0); and for
k = 21 is (0, 3).

The induction hypothesis for any k ≥ 21 is P(k−3)∧P(k−2)∧P(k−1)∧P(k). We show that
this implies that P(k+1) is true. Using the assumption P(k−3), we make postage for k−3
using (x, y) four and seven cent stamps, so that 4x+7y = k−3. Adding one more four cent
stamp gives (x+ 1, y) stamps which total 4(x+ 1) + 7y = (4x+ 7y) + 4 = (k−3) + 4 = k+ 1
cents postage. Thus P(k + 1) is also true, completing the induction step.

10. Let fn be the n-th Fibonacci number. Show that for positive integer n we have

f2
1 + f2

2 + · · ·+ f2
n = fnfn+1.

The Fibonacci numbers are defined by

f0 = 0, f1 = 1, fn = fn−1 + fn−2 for n = 2, 3, 4, . . ..

Thus f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, and so on.
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Let’s argue by induction. For the base case n = 1, the left side is f2
1 = 12 = 1 and the right

side is f1f2 = 1 · 1 = 1 so the equation holds for n = 1.

For any n ≥ 1, assume that the formula holds for n (induction hypothesis). Then for n+ 1,
by the induction hypothesis

n+1∑
i=1

f2
i =

(
n∑

i=1

f2
i

)
+ f2

n+1 = fnfn+1 + f2
n+1 = (fn + fn+1)fn+1.

However, the Fibonacci numbers satisfy fn + fn+1 = fn+2 so this yields

n+1∑
i=1

f2
i = (fn + fn+1)fn+1 = fn+2fn+1 = fn+1f(n+1)+1

so the induction step is verified.

11. Let fn be the n-th Fibonacci number. Show that for positive integer n we have

Sn = f0 − f1 + f2 − · · · − f2n−1 + f2n = f2n−1 − 1

Let’s argue by induction. For the base case n = 1, the left side is f0−f1 +f2 = 0−1+1 = 0
and the right side is f1 − 1 = 1− 1 = 0 so the equation holds for n = 1.

For any n ≥ 1, assume that the formula holds for n. Then for n + 1, by the induction
hypothesis

Sn+1 = f0 − f1 + f2 − · · · − f2n−1 + f2n − f2n+1 + f2n+2

= (f0 − f1 + f2 − · · · − f2n−1 + f2n)− f2n+1 + f2n+2

= (f2n−1 − 1)− f2n+1 + f2n+2.

However, the Fibonacci numbers satisfy f2n−1 + f2n = f2n+1 and f2n+2 = f2n + f2n+1 so
these yield

Sn+1 = (f2n+1 − f2n − 1)− f2n+1 + (f2n + f2n+1) = f2n+1 − 1 = f2(n+1)−1 − 1.

so the induction step is verified.

12. Let fn be the n-th Fibonacci number. Show that for positive integer n we have

An =
(

1 1
1 0

)n

=
(
fn+1 fn

fn fn−1

)

Let’s argue by induction. For the base case n = 1, the left side is
(

1 1
1 0

)1

=
(

1 1
1 0

)
and

the right side is
(
f2 f1
f1 f0

)
=
(

1 1
1 0

)
so the equation holds for n = 1.

Assume for any n ≥ 1 that the formula holds for n. Then for n + 1, by the induction
hypothesis (

1 1
1 0

)n+1

=
(

1 1
1 0

)(
1 1
1 0

)n

=
(

1 1
1 0

)(
fn+1 fn

fn fn−1

)
=
(
fn+1 + fn fn + fn−1

fn+1 fn

)
.
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However, the Fibonacci numbers satisfy fn+1 + fn = fn+2 and fn + fn−1 = fn+1 so these
yield (

1 1
1 0

)n+1

=
(
fn+2 fn+1

fn+1 fn

)
=
(
f(n+1)+1 fn+1

fn+1 f(n+1)−1

)
.

so the induction step is verified.

13. Show that the n-th derivative fn(x) =
dn

dxn

(
xex
)

= (x+ n)ex for all positive integers n.

We’ll use induction and the product rule. Note that fn is inductively defined: f0(x) = xex

and fn(x) = (fn−1(x))′ for n a positive integer.

The base case is n = 1. f1(x) = (xex)′ = x′ex + x(ex)′ = ex + xex = (x+ 1)ex.

Now assume for any n ≥ 1 that the formula holds for fn(x). Then, by the recursive
definition, induction hypothesis and product rule,

fn+1(x) = (fn(x))′ = ((x+ n)ex)′ = (x+ n)′ ex+(x+n) (ex)′ = ex+(x+n)ex = (x+n+1)ex

so the formula holds for fn+1(x) too and the induction is complete.

14. Find the number of integers between 1000 and 9999 inclusive that are divisible by 7 or are
not divisible by 11.

Let U , the universal set, be numbers between 1000 and 9999 inclusive. Let A1 denote the
numbers in this range divisible by seven. Let A2 denote the number divisible by eleven.
Note that the numbers divisible by seven or not divisible by eleven may be written A1∪A2 =
(A1 ∩A2) ∪A2. But since A1 ∩A2 and A2 are disjoint, by the sum formula∣∣A1 ∪A2

∣∣ = |A1 ∩A2|+
∣∣A2

∣∣ .
Let us count the number both divisible by seven and divisible by eleven, (namely those
divisible by 77). Thus we count the number of integer solutions of the inequality 1000 ≤
77t ≤ 9999. Thus 12.99 = 1000/77 ≤ t ≤ 9999/77 = 129.86, hence there are |A1 ∩ A2| =
129− 13 + 1 = 117 solutions.

The to find the number divisible by eleven, we count the number of integer solutions of
the inequality 1000 ≤ 11t ≤ 9999. Because 90.91 = 1000/11 ≤ t ≤ 9999/11 = 909,
there are |A2| = 909 − 91 + 1 = 819 solutions. The number of integers from 1000 to 9999
inclusive is |U | = 9999 − 1000 + 1 = 9000. Thus the number not divisible by eleven is
|A2| = 9000− 819 = 8181.

Thus, substituting in the sum formula∣∣A1 ∪A2

∣∣ = 117 + 8181 = 8298.

The solution may also be obtained using the inclusion-exclusion formula.

15. Suppose that there are finite sets A1, A2, . . . , An. Then the number of elements in the
union is given by the inclusion-exclusion formula

|A1 ∪ · · · ∪An| =
n∑

k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

|Ai1 ∩Ai2 ∩ · · · ∩Aik
|

where the second sum is over all k element subsets {i1, i2, . . . , ik} ⊆ {1, 2, 3, . . . , n}. Prove
the formula using induction.
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Let us use strong induction. For one set, the left side is |A1| and the right side is (−1)1+1|A1|,
which are equal, so that the base case is verified.

For two sets, we can write the union as the union of three disjoint sets, namely

A1 ∪A2 = (A1 −A2) ∪ (A1 ∩A2) ∪ (A2 −A1).

We can write each set as a disjoint union too,

A1 = (A1 −A2) ∪ (A1 ∩A2); A2 = (A1 ∩A2) ∪ (A2 −A1).

Using the sum formula, that we can add the numbers of disjoint sets

|A1 ∪A2| = |A1 −A2|+ |A1 ∩A2|+ |A2 −A1|
= (|A1 −A2|+ |A1 ∩A2|) + (|A1 ∩A2|+ |A2 −A1|)− |A1 ∩A2|
= |A1|+ |A2| − |A1 ∩A2|
= (−1)1+1 (|A1|+ |A2|) + (−1)1+2 |A1 ∩A2|

which is the n = 2 case.

For the induction step, assume that the for some n ≥ 2 we know that the formula holds for
any number k of sets, where 1 ≤ k ≤ n. Then, to the union of n+ 1 sets, apply the union
formula for the n = 2 case first

|A1 ∪ · · · ∪An ∪An+1| = |(A1 ∪ · · · ∪An) ∪An+1|
= |A1 ∪ · · · ∪An|+ |An+1| − |(A1 ∪ · · · ∪An) ∩An+1|
= |A1 ∪ · · · ∪An|+ |An+1| − |(A1 ∩An+1) ∪ · · · ∪ (An ∩An+1)|

where we have used the distributive law for intersections and unions. Now we apply the
induction hypothesis using the n set formula twice

|A1 ∪ · · · ∪An ∪An+1| =

 n∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

|Ai1 ∩Ai2 ∩ · · · ∩Aik
|

+ |An+1|

−
n∑

k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

|(Ai1 ∩An+1) ∩ (Ai2 ∩An+1) ∩ · · · ∩ (Aik
∩An+1)|

=

 n∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

|Ai1 ∩Ai2 ∩ · · · ∩Aik
|

+ (−1)1+1 |An+1|

+
n∑

k=1

(−1)k+2
∑

1≤i1<i2<···<ik≤n

|Ai−1 ∩Ai2 ∩ · · · ∩Aik
∩An+1| .

It remains to regroup the terms to recognize the desired right side. Note that the first sum
is over all subsets of {1, 2, . . . , n+ 1} not involving n+ 1, the second is the singleton {n+ 1}
and the last is over subsets of two or more elements, one of which is n + 1. This is the
same partition we encountered in problem (7). Note that in each sum the power of −1 is
one more than the number of sets in the intersection. Combining terms with like number
of sets we complete the induction

|A1 ∪ · · · ∪An ∪An+1| =
n+1∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n+1

|Ai1 ∩Ai2 ∩ · · · ∩Aik
| .
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16. Show that for every positive integer n, ¬(p1∨p2∨· · ·∨pn) is equivalent to ¬p1∧¬p2∧· · ·∧¬pn

where p1, p2,. . . , pn are propositions.

Let us use strong mathematical induction.

For the base case, the left side is ¬(p1) and the right side is ¬p1 which are logically equivalent
since they are the same statement. For the case n = 2, the statement is just De Morgan’s
Law of Table 6 on p. 24, which is proved using a truth table on p. 22. Thus we have
¬(p1 ∨ p2) ≡ ¬p1 ∧ ¬p2.

Let us now assume that the statements are equivalent for some number n ≥ 2 of propositions.
Then for n + 1 propositions, using the n = 2 equivalence first, and then the inductive n
proposition equivalence,

¬(p1 ∨ p2 ∨ · · · ∨ pn ∨ pn+1) ≡ ¬
([
p1 ∨ p2 ∨ · · · ∨ pn

]
∨ pn+1

)
≡ ¬

[
p1 ∨ p2 ∨ · · · ∨ pn

]
∧ ¬pn+1

≡ [¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn] ∧ ¬pn+1

≡ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn ∧ ¬pn+1

and the induction step is proved.

Note that we have implicitly used the associative property for conjunction and disjunction
of arbitrarily many propositions.

17. Suppose that you begin with a pile of n stones and split the pile into n piles of one stone
each by successively splitting a pile of stones into two smaller piles. Each time you split a
pile, you multiply the the number of stones in each of the smaller piles you form, so that if
the smaller piles have r and s stones in them, you compute rs. Show that no matter how
you split the piles, the sum of the products computed at each step equals to 1

2n(n− 1).

For example, if the original pile has five stones then, the sequence of splittings

∗ ∗ ∗ ∗ ∗ → ∗| ∗ ∗ ∗ ∗ → ∗| ∗ ∗| ∗ ∗ → ∗| ∗ | ∗ | ∗ ∗ → ∗| ∗ | ∗ | ∗ |∗

results in 1 · 4 = 4, 2 · 2 = 4, 1 · 1 = 1, 1 · 1 = 1 whose sum is 4 + 4 + 1 + 1 = 10 = 1
2 · 5 · 4.

For another sequence of splittings

∗ ∗ ∗ ∗ ∗ → ∗ ∗ | ∗ ∗∗ → ∗ ∗ | ∗ | ∗ ∗ → ∗| ∗ | ∗ | ∗ ∗ → ∗| ∗ | ∗ | ∗ |∗

results in 2 · 3 = 6, 1 · 2 = 2, 1 · 1 = 1, 1 · 1 = 1 whose sum is 6 + 2 + 1 + 1 = 10 also.

Let us use strong induction. For one stone, no splittings are done so the sum of products is
zero whereas 1

2 · 1 · 0 = 0 so the numbers are equal.

Now assume for any positive n, the splitting formula holds for any number k of stones, where
1 ≤ k ≤ n. Starting with a pile of n + 1 stones, assume that an arbitrary first splitting
divides the pile into two smaller piles containing r an s stones, where r + s = n + 1. This
first splitting contributes rs to the sum. Note that both 1 ≤ r, s ≤ n because each small
pile is nonempty and therefore, both are smaller than the original pile. Note that further
splittings of the whole pile either split the first smaller pile or split the second smaller pile
and whichever pile they split, there is no effect on the splittings of the other pile, so may
be regarded as splittings of the smaller piles separately. Applying the inductive hypothesis,
the further splittings of the first pile contributes 1

2r(r − 1) and the splittings of the second
contributes 1

2s(s− 1) to the sum. Adding the three

rs+
r(r − 1)

2
+
s(s− 1)

2
=

2rs+ r2 − r + s2 − s
2

=
(r + s)(r + s− 1)

2
=

(n+ 1)n
2

so the induction is complete.
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18. Let d be as positive integer. Show that in any group of d + 1 not necessarily consecutive
integers, there must be two with exactly the same remainder when divided by d.
This is an example of the pigeon hole principle. d+ 1 “pigeons” (numbers) must reside in d
“holes” (congruence classes modulo d) and therefore at least two numbers must belong to
the same residue class.

19. Suppose that there are n ≥ 2 people at a party. Show that there must be at least two of them
who know the same number of people at the party.
We assume that knowing is a symmetric relation: if A knows B then B knows A. Let
v(i) be the number of other people that the ith person knows. The set of numbers known
is S = {v(i), v(2), . . . , v(n)}. People may know noone or may know everyone else at the
party, so that 0 ≤ v(i) ≤ n − 1. If noone knows everybody at the party then v(i) < n − 1
so the function takes v : {1, 2, . . . , n} → {0, 1, . . . , n − 2}. Since the map is from a larger
set to a smaller one, by the pigeon-hole principle there must be two people i 6= j such
that v(i) = v(j). On the other hand, there may be sombody, say person i0, who knows
everybody, v(i0) = n − 1. But then, by symmetry, everyone knows person i0, so v(j) ≥ 1
for all j. This time the function maps v : {1, 2, . . . , n} → {1, 2, . . . , n − 1}. Since the map
is from a larger set to a smaller one again, by the pigeon-hole principle, there must be two
people i 6= j such that v(i) = v(j). In either case, we have shown that there are at least
two people who know the same number.

20. A standard deck of 52 cards consists of four suits {♣,♦,♥,♠}. Each suit has 13 different
kinds of cards {2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K,A}. How many two card hands are there such
that both cards are of the same suit or of the same kind?
We observe that if the hand has cards of the same kind they cannot be of the same suit
and if the cards have the same suit they cannot be of the same kind. Therefore the number
of hands is the sum of hands of the same suit plus hands of the same kind. The number of
hands of the same suit is the number of suits, 4 times the number of two card combinations
chosen form the thirteen cards of that suit,

(
13
2

)
. The number of hands of the same kind is

number of kinds 13 times the number of two card combinations of the same kind,
(
4
2

)
. The

total is thus

4 ·
(

13
2

)
+ 13 ·

(
4
2

)
= 4 · 13 · 12

2
+ 13 · 4 · 3

2
= 390.

21. A bag contains 26 scrabble tiles, each labeled by a different letters of the alphabet.

(a) How many different five letter words can be selected from the bag (without replacement)?
(b) How many of these words are in alphabetical order?
(c) How many of these contain at least one vowel {A,E, I,O,U}?

(a.) In choosing all words, order is important. Thus we count the number of permutations
of 26 letters, taken 5 at a time. The number of five letter words is

P (26, 5) = 26 · 25 · 24 · 23 · 22 = 7893600.

(b.) Given five different letters, there is only one permutation of these in alphabetical order.
Thus the number of words in alphabetical order is the number of combinations of 26 letters
taken five at a time

C(26, 5) =
26 · 25 · 24 · 23 · 22

5!
= 65780.

(c.) The number with at least one vowel is the total number minus the number with no
vowel at all. There are 21 non-vowels so the number of words without vowels is the number
of permutations of 21 letters taken five at a time

P (26, 5)− P (21, 5) = 7893600− 21 · 20 · 19 · 18 · 17 = 7893600− 2441880 = 5451720.
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