MATH 1310 - 009 — Midterm 1 Name:

Date: 09/08/2017 Instructor: Ethan Levien

No phones, calculators, or notes! Remember to show all your work.

1. (20 points) Compute the derivative of $f(x) = 4x - x^2$ using the limit-based definition.

2. (20 points) Determine if the derivative of

$$f(x) = \begin{cases} 3x - 1, & x < 2\\ x^2 - 1, & x \ge 3 \end{cases}$$

exists at x = 3.

3. (30 points) Match the graphs of the four functions ((A)–(D)) given with the graphs of their derivatives ((a)–(d)). Explain your answer. For example, identify some distinct feature(s) of the graphs.

- 4. (30 points) Compute the following derivatives using the derivative rules
 - (a) $\frac{d}{dx}(4x^4 2x^3 + 1)$
 - (b) $\frac{d}{dx}\cos(\cos(x))$
 - (c) $\frac{d}{dx}e^{\cos(x^2)}$

 - (d) $\frac{d}{dx} \ln\left(\frac{1}{x}\right)$ (e) $\frac{d}{dx} \cos\left(x^2 + \sin(x)\right)$
 - (f) $\frac{d}{dx} \frac{1}{\cos(3x)}$

- 5. (20 points) Consider the curve defined by the equation $\sqrt{xy+1} = x-1$
 - (a) Find an expression for $\frac{dy}{dx}$
 - (b) Demonstrate that the point (x, y) = (6, 4) lies on this curve.
 - (c) Find the slope dy/dx of the tangent line to the curve at the point in (b).

6. (20 points) Use the linear approximation of $f(x) = \sqrt[3]{x}$ to estimate the value of $\sqrt[3]{8.001}$. Leave your answer as an expression involving sums and fractions of whole numbers. Hint: a easy-to-compute nearby point is $\sqrt[3]{8} = 2$. Show your work.

Problem	Points	Score
1	20	
2	20	
3	30	
4	30	
5	20	
6	20	
	Total:	