Problem Bank for Midterm 3

1. An electrical circuit contains two resistors in series, with resistances $R_{1} \Omega$ and $R_{2} \Omega$. It is known that the total resistance R may be expressed as

$$
\begin{equation*}
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \tag{1}
\end{equation*}
$$

The first resistance R_{1} is equal to $\frac{4}{3} \Omega$, and is decreasing at a rate of $4 \Omega / h r$. The second resistance R_{2} is equal to 4Ω and is increasing at a rate of $8 \Omega / h r$.
(i) What is the total resistance R ?
(ii) What is the rate of change of R in $\Omega / h r$?

Solution: (i) We first evaluate R.

$$
\begin{equation*}
\frac{1}{R}=\frac{3}{4}+\frac{1}{4}=1 . \tag{2}
\end{equation*}
$$

This means that $R=1 \Omega$.
(ii) By the Chain Rule,

$$
\begin{equation*}
-\frac{1}{R^{2}} \frac{d R}{d t}=-\frac{1}{R_{1}^{2}} \frac{d R_{1}}{d t}-\frac{1}{R_{2}^{2}} \frac{d R_{2}}{d t} . \tag{3}
\end{equation*}
$$

Substituting in the values for R, R_{1} and R_{2},

$$
\begin{aligned}
\frac{d R}{d t} & =\frac{9}{16} \frac{d R_{1}}{d t}+\frac{1}{16} \frac{d R_{2}}{d t} \\
& =-\frac{9 \times 4}{16}+\frac{8}{16} \\
& =-\frac{7}{4} .
\end{aligned}
$$

This means that the total resistance is decreasing at a rate of $\frac{7}{4} \Omega / h r$.
2. Let $f(x)=\frac{2}{3} x^{3}-\frac{3}{2} x^{2}-2 x+10$.
(i) Find the extreme points of f. Identify which of these are local maxima and which are local minima, and explain your answer.
(ii) Find the intervals over which f is increasing, and the intervals where f is decreasing.
(iii) Find any inflection points, and intervals where f is concave upwards, and intervals where f is concave downwards.
(iv) Sketch the curve.

Solution: Differentiating,

$$
\begin{aligned}
f^{\prime}(x) & =2 x^{2}-3 x-2 \\
& =(x-2)(2 x+1) .
\end{aligned}
$$

Since f is differentiable everywhere, its extreme values are only where its derivative is zero. These points are 2 and $-\frac{1}{2}$.
There are two ways you can determine whether these extreme values are maxima or minima. The first method is to check the second derivative. The second derivative is

$$
\begin{equation*}
f^{\prime \prime}(x)=4 x-3 \tag{4}
\end{equation*}
$$

Since $f^{\prime \prime}>0$ at $x=2$, this is a local minimum. Since $f^{\prime \prime}<0$ at $x=-\frac{1}{2}$, this is a local maximum.

The other method is to look at the signs of f^{\prime} either side of the extreme value. It can be checked that $f^{\prime}>0$ for $x>2$, and $f^{\prime}(0)=-2<0$. This means that $x=2$ is a local minimum. Also $f^{\prime}(-1)=3$, and since $f^{\prime}(0)<0$, this means that $x=-\frac{1}{2}$ is a local minimum.
(ii) f is increasing over the interval $(2, \infty)$, because $x=2$ is a local minimum. f is decreasing over the interval $(-1 / 2,2)$, because this interval has a local maximum on the left and a local minimum on the right. f is increasing over the interval $(-\infty,-1 / 2)$, since this interval has a local maximum on the right.
(iii) Inflection points can only occur when $f^{\prime \prime}=0$. The only point where $f^{\prime \prime}=0$ is $x=\frac{3}{4}$. This is an inflection point because $f^{\prime \prime}<0$ for $x<\frac{3}{4}$, and $f^{\prime \prime}>0$ for $x>\frac{3}{4}$.
The function is concave upwards on the interval $\left(\frac{3}{4}, \infty\right)$, and it is concave downwards over the interval $\left(-\infty, \frac{3}{4}\right)$.
3. Let $f(x)=x^{\frac{1}{3}}(x-1)^{2}$. Identify the critical numbers of f.

Solution: The critical numbers are where $f^{\prime}=0$, or the derivative doesn't exist. Differentiating,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{3 x^{\frac{2}{3}}}(x-1)^{2}+2(x-1) x^{\frac{1}{3}} \\
& =x^{\frac{1}{3}}(x-1)\left(\frac{x-1}{3 x}+2\right) .
\end{aligned}
$$

Since $\left|f^{\prime}(x)\right| \rightarrow \infty$ as $x \rightarrow 0$, the derivative does not exist at $x=0$, so $x=0$ is a critical number.

The derivative is zero when either $x-1=0$, in which case $x=1$, or

$$
\frac{x-1}{3 x}+2=0,
$$

in which case $x=\frac{1}{7}$.
In summary, the critical numbers 0,1 and $\frac{1}{7}$.
4. Let $f(x)=\cos (x)+1-x$. Find the absolute maximum and absolute minimum values of f over the interval $[-\pi, 2 \pi]$.

Solution: We first identify the local maxima and minima through differentiating. We find that

$$
f^{\prime}(x)=-\sin (x)-1
$$

Over the interval, $f^{\prime}(x)=0$ when $x=-\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$.
Evaluating the function at these points, we find that $f\left(-\frac{\pi}{2}\right)=1+\frac{\pi}{2}$ and $f\left(\frac{3 \pi}{2}\right)=1-\frac{3 \pi}{2}$. At the ends of the interval, $f(-\pi)=\pi$, and $f(2 \pi)=2-2 \pi$.
Of these four values, the biggest is π, so the absolute maximum is π.
The smallest is $2-2 \pi$, so the absolute minimum is $2-2 \pi$.

