Math 1310

Midterm Exam 3

Name and Unid (print clearly): \qquad
Date: 11/17/2017
Instructor: Ethan Levien

1. Suppose a sphere's radius is growing at a rate $3 \mathrm{~cm} / \mathrm{min}$. At what rate is the surface area growing when the radius is 5 cm ? Note the surface area of a sphere is $A=4 \pi r^{2}$.

Solution: $\frac{\mathrm{d} r}{\mathrm{~d} t}=3 \mathrm{~cm} / \mathrm{min}$ is given, the question asks for $\frac{\mathrm{d} A}{\mathrm{~d} t}$ when $r=5$. Use implicit differentiation:

$$
\frac{d A}{d t}=\frac{d}{d t} 4 \pi r^{2}=8 \pi r \frac{d r}{d t} .
$$

Plugging in the values, the derivative A^{\prime} is obtained:

$$
\frac{d A}{d t}=8 \pi(5 \times 3)=8 \times 15 \times \pi
$$

2. Consider the function $f(x)=-x^{4}-4 x^{3}+20 x^{2}+1$.
(a) Find the intervals, where f is increasing and the intervals where f is decreasing.

Solution: Find the critical points and identify the intervals between them:

$$
f^{\prime}(x)=-4 x^{3}-12 x^{2}+40 x=-4 x\left(x^{2}+3 x-10\right)=-4 x(x-2)(x+5) .
$$

the critical points are $c=-5,0,2$; and the intervals between are $(-\infty,-5),(-5,0)$, $(0,2)$, and $(2, \infty)$ So f is increasing on $(-\infty,-5)$ and $(0,2)$ and decreasing on $(-5,0)$ and $(2, \infty)$.
(b) Find the x-locations of the local maxima and local minima.

Solution:

Local maxima: $x=-5, x=2$.
Local minima: $x=0$.
3. (20 points) Identify the indeterminate form and evaluate the following limits using l'Hospitals rule.
(a) $\lim _{x \rightarrow 1} \frac{e^{x-1}-1}{x^{2}}$

Solution: The indeterminate form is " 0 ".

$$
\lim _{x \rightarrow 1} \frac{e^{x-1}-1}{x^{2}} \stackrel{l^{\prime} H}{=} \lim _{x \rightarrow 1} \frac{e^{x-1}}{2 x}=\frac{1}{2}
$$

(b) $\lim _{x \rightarrow 0} \sec (x)^{\frac{1}{x}}, \quad$ Note: $\sec (x)=\frac{1}{\cos (x)}$, and $(\sec (x))^{\prime}=\sec (x) \tan (x)$.

Solution: The indeterminate form is " 1∞ ". Taking \ln of the limit gives

$$
\lim _{x \rightarrow 0} \frac{1}{x} \ln (\sec (x))=\lim _{x \rightarrow 0} \frac{\ln (\sec (x))}{x} \stackrel{l^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{\frac{\sec (x) \tan (x)}{\sec (x)}}{1}=\lim _{x \rightarrow 0} \frac{\tan (x)}{1}=0
$$

Thus

$$
\lim _{x \rightarrow 0} \sec (x)^{\frac{1}{x}}=e^{0}=1
$$

4. (20 points) Suppose a soup manufacturer want's to stand out from their competition by packaging their new line of organic soups in rectangular cartons with a base depth w that is X-times its base width w. The soup volume is fixed at $400 \mathrm{~mL}\left(\mathrm{~cm}^{3}\right)$. The rectangular carton shape must be chosen with a given height h, width w, and depth $d \mathrm{~cm}$. In order to minimize packaging costs, the manufacturer wants to find the rectangular shape that minimizes surface area. Your goal, find the dimensions (in cm) of the minimum-surface area carton. You may leave your calculations for w, h, and d as algebraic expressions.

Solution:

$$
\begin{array}{r}
V=w \times X w \times h=400=X w^{2} h \\
h=\frac{400}{X w^{2}} \\
S=2 h w+2 h X w+2 X w^{2} \\
S=\frac{800}{X w}+\frac{800}{w}+2 X w^{2} \\
S=\left(\frac{1}{X}+1\right) \frac{800}{w}+2 X w^{2} \\
S^{\prime}(w)=-\left(\frac{1}{X}+1\right) \frac{800}{w^{2}}+4 X w=0 \\
4 X w^{3}=800\left(\frac{1}{X}+1\right) \\
w^{3}=\frac{200\left(\frac{1}{X}+1\right)}{X}=200\left(\frac{1+X}{X^{2}}\right) \\
w_{*}=\sqrt[3]{200\left(\frac{1+X}{X^{2}}\right)} \\
h_{*}=\frac{400}{X w_{*}^{2}} \\
d_{*}=X w_{*} .
\end{array}
$$

5. (20 points) Integration via summation
(a) Write down the integral equalling the following Riemann Sum:

$$
\lim _{N \rightarrow \infty} \sum_{n=0}^{N-1}\left[x_{n} e^{x_{n}}-\cos \left(x_{n}\right)\right] \frac{14}{N}
$$

where $x_{n}=-11+\frac{14 n}{N}$. Is this a left-endpoint, right-endpoint or midpoint rule?
(b) Write down the N-point, right-endpoint Riemann Sum approximation to the following integral. Express your answer in terms of the points $x_{n}=-3+\frac{6 n}{N}$.

$$
\int_{-3}^{3}\left(x^{2}+\sin (x)\right) d x
$$

Solution:

a) This is the left-endpoint rule, and the integral is

$$
\int_{-11}^{3}\left(x e^{x}-\cos (x)\right) d x
$$

b)

$$
R_{N}=\frac{6}{N} \sum_{n=1}^{N}\left(x_{n}^{2}+\sin \left(x_{n}\right)\right)
$$

6. (20 points) Compute the (a) definite integral, (b) indefinite integral.
(a)

$$
\int_{-2}^{2}\left(x^{2}-\cos (x)\right) d x
$$

(b)

$$
\int\left(e^{x}+4 x^{-1}-x^{2}\right) d x
$$

Solution: a) This is $\left[\frac{x^{3}}{3}-\sin (x)\right]_{-2}^{2}$, which evaluates to $\frac{16}{3}-\sin (2)+\sin (-2)=\frac{16}{3}$.
b) This is

$$
e^{x}+4 \log (x)-\frac{x^{3}}{3}+C
$$

