\qquad

1. Compute the derivatives of the following functions using the derivative rules.
(a) $f(x)=\cos (x) \sqrt{1+e^{\left(x^{2}\right)}}$

Rewrite

$$
f(x)=\cos (x)\left(1+e^{\left(x^{2}\right)}\right)^{\frac{1}{2}}
$$

By product rule and chain rule

$$
f^{\prime}(x)=-\sin (x)\left(1+e^{\left(x^{2}\right)}\right)^{\frac{1}{2}}+\cos (x) \cdot \frac{1}{2}\left(1+e^{\left(x^{2}\right)}\right)^{-\frac{1}{2}} \cdot e^{\left(x^{2}\right)} \cdot 2 x
$$

(b) $g(x)=\frac{\sec (x)}{4+\tan ^{-1}(x)}$

By quotient rule,

$$
g^{\prime}(x)=\frac{\sec (x) \tan (x)\left(4+\tan ^{-1}(x)\right)-\sec (x) \cdot \frac{1}{1+x^{2}}}{\left(4+\tan ^{-1}(x)\right)^{2}}
$$

(c) $h(x)=x^{\ln (x)}$

Rewrite

$$
h(x)=\left(e^{\ln (x)}\right)^{\ln (x)}=e^{(\ln (x))^{2}}
$$

By chain rule

$$
h^{\prime}(x)=e^{(\ln (x))^{2}} \cdot 2 \ln (x) \cdot \frac{1}{x}
$$

2. (a) Compute the derivative of $f(x)=\frac{1}{x+3}$ using the limit based definition.

The derivative at $a \neq-3$ is

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{a+h+3}-\frac{1}{a+3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(a+3)-(a+h+3)}{h(a+h+3)(a+3)} \\
& =\lim _{h \rightarrow 0}-\frac{h}{h(a+h+3)(a+3)} \\
& =\lim _{h \rightarrow 0}-\frac{1}{(a+h+3)(a+3)} \\
& =-\frac{1}{(a+3)^{2}}
\end{aligned}
$$

(b) Use the definition of derivative to find $L=\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}$.

Let $f(x)=\ln (x)$ that has $f^{\prime}(x)=\frac{1}{x}$. Then

$$
\begin{aligned}
L & =\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln (1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =f^{\prime}(1)=\frac{1}{1}=1 .
\end{aligned}
$$

3. (a) The figure shows graphs of $f, f^{\prime}, f^{\prime \prime}$ and $f^{\prime \prime \prime}$. Identify each curve and explain your choices.

Curve	A, B, C or D ?	Why?
f	A	Starting function.
f^{\prime}	D	A is decreasing for $x<-.8$, horizontal tangent at $x=-.8$ and increasing for $-.8<x$. So $A^{\prime}(x)<0$ for $x<-.8, A^{\prime}(-.8)=0$ and $A^{\prime}(x)>0$ if $x>-.8 . D$ is the only function that has these signs.
$f^{\prime \prime}$	C	D increases for $x<.5$, decreases for $.5<x<2.6$ and then increases. So $D^{\prime}(x)>0$ for $x<.5, D^{\prime}(x)<0$ for $.5<x<2.6$, and $D^{\prime}(x)>0$ for $2.6<x$. C is the only function that has these signs.
$f^{\prime \prime \prime}$	B	C increases for $x<-1.6$, decreases for $-1.6<x<1.6$, then increases for $1.6<x<4.7$ and then decreases. So $C^{\prime}(x)>0$ for $x<.5$ or $1.6<x<4.7$ and $C^{\prime}(x)<0$ for $.5<x<2.6$ or $4.7<x . B$ is the only function that has these signs.

(b) The circumference of a sphere is measured to be 10 cm with a possible error or 0.5 cm . Use differentials to estimate the maximum error in the calculated volume. What is the relative error?
$\left[\right.$ Hint. Recall that a sphere of circumference c has volume $\quad V=\frac{c^{3}}{6 \pi^{2}}$.]
Computing the derivative, remembering that $\frac{1}{6 \pi^{2}}$ is constant,

$$
\frac{d V}{d c}=\frac{c^{2}}{2 \pi^{2}}
$$

The differential is

$$
d V=\frac{d V}{d c} d c
$$

Thus if the error in circumference is $\Delta c= \pm 0.5$, then at $c=10 \mathrm{~cm}$, by using $d c=\Delta c$, the differential gives an approximation

$$
\Delta V \approx d V=\frac{d V}{d c} d c=\frac{c^{2}}{2 \pi^{2}} d c=\frac{10^{2}}{2 \pi^{2}}(\pm 0.5)= \pm \frac{25}{\pi^{2}} \approx \pm 2.533 \mathrm{~cm}^{3}=
$$

The relative error is

$$
\frac{\Delta V}{V} \approx \frac{d V}{V}=\frac{\frac{c^{2}}{2 \pi^{2}} d c}{\frac{c^{3}}{6 \pi^{2}}}=\frac{3 d c}{c}=\frac{3 \cdot(\pm 0.5)}{10}= \pm \frac{3}{20}
$$

Thus a 5% relative error on measuring the circumference results in about a 15% relative error in the volume.
4. The gravitational force exerted by the earth on a unit mass at a distance x from the center of the planet is

$$
F(x)= \begin{cases}\frac{G M x}{R^{3}} & \text { if } x<R \\ \frac{G M}{x^{2}} & \text { if } x \geq R\end{cases}
$$

where M is the mass of the earth, R is the radius and G is the gravitational constant. Sketch the graph of $y=F(x)$. Is $F(x)$ a continuous function of x ? Why? Is $F(x)$ differentiable function of x ? Why?

Plot of gravitational force function $F(x)$.
$F(x)$ is continuous. $F(x)$ is a linear function for $x<R$ (the region inside the earth) and then is inverse quadratic if $R<x$ outside the earth. Hence to the left and right of $x=R$
the functions are continuous. At $x=R$ the left and right limits agree, so $F(x)$ is also continuous at $x=R$. To see this, compute the left and right limits

$$
\lim _{x \rightarrow R-} F(x)=\lim _{x \rightarrow R-} \frac{G M x}{R^{3}}=\frac{G M}{R^{2}} ; \quad \lim _{x \rightarrow R+} F(x)=\lim _{x \rightarrow R+} \frac{G M}{x^{2}}=\frac{G M}{R^{2}}
$$

$F(x)$ is not differentiable. Because $F(x)$ is a linear function for $x<R$ and inverse quadratic if $R<x$, to the left and right of $x=R$ the functions are dfferentiable. But there is a kink in $F(x)$ at $x=R$ because the slopes to the left and to the right are different so F is not differentiable at $x=R$. The limits of the left and right derivatives differ. To see this, compute the left and right limits

$$
\lim _{x \rightarrow R-} F^{\prime}(x)=\lim _{x \rightarrow R-} \frac{G M}{R^{3}}=\frac{G M}{R^{3}} ; \quad \lim _{x \rightarrow R+} F^{\prime}(x)=\lim _{x \rightarrow R+}-\frac{2 G M}{x^{3}}=-\frac{2 G M}{R^{3}} .
$$

5. (a) Show that $(2,1)$ is a point on the lemniscate curve. Find the slope of the tangent line at the point $(2,1)$.

$$
\begin{equation*}
3\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right) \tag{1}
\end{equation*}
$$

At the point $(2,1)$ the left and right sides evaluate to

$$
\begin{aligned}
& \mathrm{LHS}=3\left(x^{2}+y^{2}\right)^{2}=3\left(2^{2}+1^{2}\right)^{2}=3 \cdot 5^{2}=75 \\
& \text { RHS }=25\left(x^{2}-y^{2}\right)=25\left(2^{2}-1^{2}\right)=25 \cdot 3=75 .
\end{aligned}
$$

They are equal so (1) holds at $(x, y)=(2,1)$.
Differentiating implicitly with respect to x and remembering that $y=y(x)$ is a function of x we get dividing by two,

$$
\begin{aligned}
3 \cdot 2\left(x^{2}+y^{2}\right) \cdot\left(2 x+2 y \frac{d y}{d x}\right) & =25\left(2 x-2 y \frac{d y}{d x}\right) \\
6\left(x^{2}+y^{2}\right) x+6\left(x^{2}+y^{2}\right) y \frac{d y}{d x} & =25 x-25 y \frac{d y}{d x} \\
\left(6\left(x^{2}+y^{2}\right)+25\right) y \frac{d y}{d x} & =\left(25-6\left(x^{2}+y^{2}\right)\right) x
\end{aligned}
$$

At $(2,1)$ this yields

$$
55 \frac{d y}{d x}=\left(6\left(2^{2}+1^{2}\right)+25\right) \frac{d y}{d x}=\left(25-6\left(2^{2}+1^{2}\right)\right) \cdot 2=-10
$$

hence

$$
\frac{d y}{d x}=-\frac{10}{55}=-\frac{2}{11}
$$

(b) Sketch the graph of a function whose first and second derivatives are negative.

Consider $f(x)=-e^{x / 2}$. Then $f^{\prime}(x)=-\frac{1}{2} e^{x / 2}<0$ and $f^{\prime \prime}(x)=-\frac{1}{4} e^{x / 2}<0$.

Graph of $f(x)=-e^{x / 2}$ whose $f^{\prime}<0$ and $f^{\prime \prime}<0$.

