Scrap paper - Tear this page off and don't turn it in

Formulas:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dx}} \sin x & =\cos x \\
\frac{\mathrm{~d}}{\mathrm{dx}} \cos x & =-\sin x \\
\frac{\mathrm{~d}}{\mathrm{dx}} \tan x & =\sec ^{2} x \\
\frac{\mathrm{~d}}{\mathrm{dx}} \cot x & =-\csc ^{2} x \\
\frac{\mathrm{~d}}{\mathrm{dx}} \sec x & =\sec x \tan x \\
\frac{\mathrm{~d}}{\mathrm{dx}} \csc x & =-\csc x \cot x \\
\frac{\mathrm{~d}}{\mathrm{dx}} \log x & =\frac{1}{x \ln a} \\
\frac{\mathrm{~d}}{\mathrm{dx}} a^{x} & =a^{x} \ln a \\
\frac{\mathrm{~d}}{\mathrm{dx}} \arcsin x & =\frac{1}{\sqrt{1-x^{2}}} \\
\frac{\mathrm{~d}}{\mathrm{dx}} \arccos x & =-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{\mathrm{~d}}{\mathrm{dx}} \arctan x & =\frac{1}{1+x^{2}}
\end{aligned}
$$

Scrap paper

Page 2

Name: \qquad uNID: \qquad

Math 1310 Final exam

Show all of your work. Read all the questions carefully! You have until 10:00am to complete this exam. This exam is questions and 100 points total. Good luck!

1. Find the domains of the following functions:
(a) (2 points) $f(x)=\ln (\sqrt{x+1})$
(b) (2 points) $f(x)=\arcsin (x)$
(c) (2 points) $f(x)=\arctan \left(\frac{1}{x}\right)$
2. (5 points) Consider the parametric curve given by

$$
x(t)=1+\sqrt{t}, \quad y(t)=\frac{t+1}{t+2} .
$$

Find a cartesian equation for the curve by elminating the parameter t.
3. Compute the following limits:
(a) (3 points) $\lim _{x \rightarrow 3^{-}} \frac{x^{2}}{x-3}$
(b) (3 points) $\lim _{x \rightarrow 3^{+}} \frac{x^{2}}{x-3}$
4. Consider the function $f(x)$ that is defined on the interval $(0, \infty)$

$$
f(x)=\ln (x)-\frac{x^{2}}{4}
$$

(a) (3 points) Find the x-value(s), if any, where $f(x)$ has zero slope.
(b) (4 points) Find the interval(s) where $f(x)$ is increasing and decreasing.
(c) (4 points) Find the point(s) of inflection, if any, for $f(x)$, and the intervals where $f(x)$ is concave up and concave down
(d) (3 points) Based on the results from above, sketch a graph of $f(x)$, indicating the intervals and points in (a)-(c), correctly represent increasing and decreasing regions, and concavity.
5. Differentiate the following functions:
(a) (3 points) $f(x)=x^{3}+x-\frac{2}{x^{2}}$
(b) (3 points) $f(x)=x^{2} e^{x}$
(c) (3 points) $f(x)=\tan ^{2} x$
(d) (3 points) $f(x)=\sin (\sin (\sin (x))$
6. (a) (4 points) Solve for $\frac{d y}{d x}$, given

$$
y^{3}=\cos (x+y)
$$

(b) (4 points) Now solve for $\frac{d y}{d x}$ given

$$
x y^{2}=x+y+1
$$

(c) (2 points) Using your answer for part b, find an equation for the line tangent to the curve $x y^{2}=x+y+1$ at the point $(1,2)$.
7. (6 points) Suppose the function $f(t)$ represents the velocity of an object for t in the range $[0, \sqrt{\pi}]$.

$$
f(t)=t \sin \left(t^{2}\right)
$$

Find the distance traveled by the object from time $t=0$ to time $t=\sqrt{\pi}$.
8. Compute the following integrals
(a) (4 points) $\int_{-1}^{0}\left(2 x-e^{x}\right) d x$
(b) (4 points) $\int_{1}^{2} \frac{v^{3}+3 v^{6}}{v^{5}} d v$
(c) (4 points) $\int \frac{x^{3}}{\sqrt{x^{4}+2}} d x$
(d) (4 points) $\int x^{2} \sin x d x$
(e) (4 points) $\int_{0}^{\pi / 2} \cos x \sin (\sin x) d x$
(f) (4 points) $\int_{0}^{\pi / 2} \sin ^{2} x d x$
9. Compute the following integrals
(a) (3 points) $\int_{1}^{\infty} \frac{1}{x^{2}} d x$
(b) (3 points) $\int_{0}^{1} x^{-2 / 3} d x$
10. (5 points) Compute the derivative of $f(x)=x^{x}$
11. (5 points) Compute the integral: $\int_{-\infty}^{0} x e^{x} d x$
12. (1 point) Will you fill out an evaluation for this course?
A. Yes
B. No

Extra credit

13. (6 points (bonus)) Compute the integral:

$$
\int \frac{x^{2}+x+1}{\left(x^{2}+2\right)(x-1)} d x
$$

14. (4 points (bonus)) Compute the derivative of $x^{\sin x}$

Page	Points	Score
3	43	
4	57	
Total:	100	

