1. Use the midpoint rule with $n=4$ subintervals to approximate the integral $I=\int_{1}^{2} \frac{1}{x} d x$. You do not need to simplify your answer.
With $n=4$ intervals, the width of each interval and the function is

$$
\Delta x=\frac{b-a}{n}=\frac{2-1}{4}=\frac{1}{4}, \quad f(x)=\frac{1}{x} .
$$

Then the equally spaced partition points are

$$
x_{0}=1, \quad x_{1}=\frac{5}{4}, \quad x_{2}=\frac{3}{2}, \quad x_{3}=\frac{7}{4}, \quad x_{4}=2 .
$$

The general formula is $x_{i}=a+i \Delta x=1+\frac{i}{4}$. The midpoints are

$$
x_{1}^{*}=\frac{9}{8}, \quad x_{2}^{*}=\frac{11}{8}, \quad x_{3}^{*}=\frac{13}{8}, \quad x_{4}^{*}=\frac{15}{8} .
$$

The general formula for the midpoint is is

$$
x_{i}^{*}=\frac{x_{i-1}+x_{i}}{2}=\frac{1+\frac{i-1}{4}+1+\frac{i}{4}}{2}=\frac{7}{8}+\frac{i}{4} .
$$

The midpoint rule is the Riemann sum using midpoints

$$
R_{n}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Substituting the given information, the midpoint rule with four intervals is

$$
R_{4}=\sum_{i=1}^{n} \frac{1}{\frac{7}{8}+\frac{i}{4}} \cdot \frac{1}{4}=\left\{\frac{8}{9}+\frac{8}{11}+\frac{8}{13}+\frac{8}{15}\right\} \frac{1}{4}
$$

2. Use Newton's Method to approximate the cube root $\sqrt[3]{3}$. Find a polynomial function with integer coefficients, for which $\sqrt[3]{3}$ is a root. Give the iteration formula. Perform two iterations by hand using the initial approximation $x_{1}=1$.
Because $\left(3^{\frac{1}{3}}\right)^{3}=3$, a polynomiql function for which $\sqrt[3]{3}$ is a root is

$$
f(x)=x^{3}-3 .
$$

Newton's Method starts from an initial guess x_{1} and proceeds by the recursion for $i \geq 1$,

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} .
$$

For our $f(x)$ this simplifies to

$$
x_{i+1}=x_{i}-\frac{x_{i}^{3}-3}{3 x_{i}^{2}}=\frac{2}{3} x_{i}+\frac{1}{x_{i}^{2}} .
$$

Running this by hand,

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=\frac{2}{3} \cdot 1+\frac{1}{1^{2}}=\frac{5}{3} \\
& x_{3}=\frac{2}{3} \cdot \frac{5}{3}+\frac{1}{\left(\frac{5}{3}\right)^{2}}=\frac{10}{9}+\frac{9}{25}=\frac{250+81}{225}=\frac{331}{225}
\end{aligned}
$$

It's not part of the answer, but you may be amused by what this looks like run on a computer. Here is an \mathbf{R} (c) program.

```
> x[1] = 1; for(i in 1:9) {x[i+1] = 2*x[i]/3 + 1/(x[i] 2) }
> print(x[1:10], digits=15)
    1.00000000000000
    1.66666666666667
    1.47111111111111
    1.44281209824934
    1.44224978959900
    1.44224957030744
    1.44224957030741
    1.44224957030741
    1.44224957030741
    1.44224957030741
```

3. (a) Find two numbers whose difference is 5 and whose product is a minimum.

Let x and y be the numbers. They satisfy the constraint that their difference is five,

$$
x-y=5
$$

The objective is to minimize their product

$$
P=x y
$$

Solving the constraint equation for one of the variables

$$
x=5+y
$$

Substituting into the objective makes it a function of one variable

$$
P(y)=(5+y) y=5 y+y^{2}
$$

This is a parabola opening upward so there is only one minimum at the vertex. The minimum occurs at the stationary point. Differentiate

$$
\frac{d P}{d y}=5+2 y
$$

Set equal to zero and solve.

$$
\begin{aligned}
5+2 y & =0 \\
y & =-\frac{5}{2} .
\end{aligned}
$$

The other number is

$$
x=5+y=\frac{5}{2} .
$$

Thus the two numbers whose difference is five which have minimum product are

$$
x=\frac{5}{2}, \quad y=-\frac{5}{2}
$$

(b) Two cars are moving from the same point. One travels east at $72 \mathrm{mi} / \mathrm{h}$ and the other travels north at $30 \mathrm{mi} / \mathrm{h}$. At what rate is the distance between the cars increasing two hours later?
Starting from the origin, one car is at $x(t)$ along the x-axis and the other is $y(t)$ along the y-axis after t hours. Their velocities are $x^{\prime}=72 \mathrm{mph}$ and $y^{\prime}=30 \mathrm{mph}$ so after $t=2$ hours, the cars are at $x=144 \mathrm{mi}$ and $y=60 \mathrm{mi}$. Let $r(t)$ be the distance between the two cars. By the Pythagorean Theorem

$$
x(t)^{2}+y(t)^{2}=r(t)^{2}
$$

Note that $x=12 \cdot 12$ and $y=12 \cdot 5$ after two hours. This is a $5-12-13$ triangle so $r=12 \cdot 13=156 \mathrm{mi}$ after two hours. Indeed

$$
144^{2}+60^{2}=20736+3600=24336=156^{2}
$$

Differentiating with respect to time

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 r \frac{d r}{d t}
$$

Solving for $\frac{d r}{d t}$ and substituting the values at two hours,

$$
\frac{d r}{d t}=\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{r}=\frac{144 \cdot 72+60 \cdot 30}{156}=\frac{10368+1800}{156}=\frac{12168}{156}=78 \mathrm{mph} .
$$

4. Consider the function $f(x)$. Find the critical numbers for f. Find the intervals over which f is increasing, and the intervals where f is decreasing. Determine whether each critical number is local maximum or a local minimum, and explain your answer. Sketch the curve.

$$
f(x)=x^{5}-10 x^{4}+20 x^{3}
$$

Differentiating,

$$
f^{\prime}(x)=5 x^{4}-40 x^{3}+60 x^{2}=5 x^{2}\left(x^{2}-8 x+12\right)=5 x^{2}(x-2)(x-8)
$$

The derivative exists at all real numbers and there are no boundary points, thus the only critical numbers are the stationary points $x=0,2,6$. On the intervals between the stationary points we have

$$
\begin{array}{r}
f^{\prime}>0 \text { on }(-\infty, 0) \text { where } f \text { is increasing; } \\
f^{\prime}>0 \text { on }(0,2) \text { where } f \text { is increasing; } \\
f^{\prime}<0 \text { on }(2,6) \text { where } f \text { is decreasing; } \\
f^{\prime}>0 \text { on }(6, \infty) \text { where } f \text { is increasing. }
\end{array}
$$

Using the first order criterion, f is increasing on $(-\infty, 0)$ and $(0,2)$ so 0 is neither a local minimum nor a local maximum; f is increasing on $(0,2)$ and decreasing on $(2,6)$ so 2 is a local maximum; f is decreasing on $(2,6)$ and increasing on $(6, \infty)$ so 6 is a local minimum.

$$
\text { Plot of } f(x)=x^{5}-10 x^{4}+20 x^{3}
$$

5.

$$
J=\int_{1}^{3} 2 x+5 d x
$$

Find the integral J using geometry. Suppose you approximate the area J with n rectangles of equal width. Using the right endpoint rule, what are the coordinates x_{i}, x_{i}^{*} and what is Δx ? Write a Riemann Sum expression $R_{n}=\sum_{?}^{?}(?) \Delta x$ for the total area of these rectangles. Find the limit $\lim _{n \rightarrow \infty} R_{n}$.
$\left[\right.$ Hint: $\left.\quad \sum_{i=1}^{n} 1=n, \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}.\right]$

Plot of $f(x)=2 x+5$.
The region S bounded by $x=1, x=3, y=0$ and $y=2 x+5$ is a trapezoid. Its area is

$$
J=\operatorname{Area}(S)=\frac{h\left(b_{1}+b_{2}\right)}{2}=\frac{2(7+11)}{2}=18
$$

where the height is $h=3-1=2$ and bases are $b_{1}=f(1)=7$ and $b_{2}=f(3)=11$.
Now suppose that the interval $[a, b]=[1,3]$ is subdivided into n equal subintervals, each of width

$$
\Delta x=\frac{b-a}{n}=\frac{3-1}{n}=\frac{2}{n} .
$$

Then the equally spaced partition points are

$$
x_{i}=a+i \Delta x=1+\frac{2 i}{n}, \quad \text { where } i=0,1,2, \ldots, n
$$

The i th subinterval is $I_{i}=\left[x_{i-1}, x_{i}\right]$. The right endpoint rule takes the sample point to be the rightmost point in each subinterval

$$
x_{i}^{*}=x_{i}=1+\frac{2 i}{n} .
$$

The i th rectangle at I_{i} contributes an area height times width $f\left(x_{i}^{*}\right) \Delta x$. Adding up all n rectangles gives the Riemann Sum

$$
R_{n}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\sum_{i=1}^{n}\left\{2\left(1+\frac{2 i}{n}\right)+5\right\} \frac{2}{n}
$$

Use the hint to rewrite the Riemann Sum:

$$
\begin{aligned}
R_{n} & =\sum_{i=1}^{n}\left\{7+\frac{4 i}{n}\right\} \frac{2}{n} \\
& =\frac{14}{n} \sum_{i=1}^{n} 1+\frac{8}{n^{2}} \sum_{i=1}^{n} i \\
& =\frac{14}{n} \cdot n+\frac{8}{n^{2}} \cdot \frac{n(n+1)}{2} \\
& =14+\frac{4(n+1)}{n}
\end{aligned}
$$

Taking the limit gives the integral

$$
J=\lim _{n \rightarrow \infty} R_{n}=14+4=18
$$

as expected.

