Math 1310 § 4.
Treibergs $a t$

First Midterm Exam
-

Name: Solutions
January 25, 2023

1. Find the equation $y=m x+b$ of the secant line for the function $y=2^{x}$ through the points $x=-1$ and $x=2$.
Let $f(x)=2^{x}$. The secant line passes through the points at $x_{1}=-1$ where $y_{1}=f(-1)=$ $2^{-1}=\frac{1}{2}$ ands $x_{2}=2$ where $y_{2}=f(2)=2^{2}=4$. The slope of the line is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-\frac{1}{2}}{2-(-1)}=\frac{\frac{7}{2}}{3}=\frac{7}{6}
$$

The line has the formula

$$
y=m x+b=\frac{7}{6} x+b
$$

It passes through the point $(2,4)$ thus

$$
4=\frac{7}{6} \cdot 2+b
$$

or

$$
b=4-\frac{7}{6} \cdot 2=\frac{12}{3}-\frac{7}{3}=\frac{5}{3}
$$

Thus the equation of the secant line is

$$
y=\frac{7}{6} x+\frac{5}{3}
$$

2. Find the limit if it exists. Explain your answer.
(a) $\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x+3}$

Simplifying the expression when $x \neq-3$ and using the difference and constant multiple laws for limits,

$$
\begin{aligned}
\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x+3} & =\lim _{x \rightarrow-3} \frac{(x+3)(x-2)}{x+3} \\
& =\lim _{x \rightarrow-3}(x-2) \\
& =\lim _{x \rightarrow-3} x-\lim _{x \rightarrow-3} 2=-3-2=-5
\end{aligned}
$$

(b) $\lim _{x \rightarrow 4} \sqrt{x^{2}+9}$

In order to use the square root law, we need to make sure that the radicand is positive. Using the power and sum laws we see that

$$
\lim _{x \rightarrow 4}\left(x^{2}+9\right)=\lim _{x \rightarrow 4} x^{2}+\lim _{x \rightarrow 4} 9=\left(\lim _{x \rightarrow 4} x\right)^{2}+\lim _{x \rightarrow 4} 9=4^{2}+9=25
$$

is positive. Thus the square root law applies

$$
\lim _{x \rightarrow 4} \sqrt{x^{2}+9}=\sqrt{\lim _{x \rightarrow 4}\left(x^{2}+9\right)}=\sqrt{25}=5
$$

which is nonzero. Thus the quotient law applies. Using also the product rule yields

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{x(x+1)}{\sqrt{x^{2}+9}} & =\frac{\lim _{x \rightarrow 4} x(x+1)}{\lim _{x \rightarrow 4} \sqrt{x^{2}+9}}=\frac{\lim _{x \rightarrow 4} x \cdot \lim _{x \rightarrow 4}(x+1)}{5} \\
& =\frac{4 \cdot\left(\lim _{x \rightarrow 4} x+\lim _{x \rightarrow 4} 1\right)}{5}=\frac{4 \cdot(4+1)}{5}=4
\end{aligned}
$$

(c) $\lim _{x \rightarrow 5} \frac{\left[\left[\frac{x}{2}\right]\right]}{|x+5|}$.

For every x is near 5 we have $\frac{x}{2}$ is near 2.5 and $\left[\left[\frac{x}{2}\right]\right]=2$, the nearest integer less than $\frac{x}{2}$. Also, for the same x near 5 , the sum $x+5$ is near 10 , which is positive. Thus for these $x,|x+5|=x+5$. Since the denominator limit

$$
\lim _{x \rightarrow 5}(x+5)=\lim _{x \rightarrow 5} x+\lim _{x \rightarrow 5} 5=5+5=10
$$

is nonzero we may apply the quotient rule

$$
\lim _{x \rightarrow 5} \frac{\left[\left[\frac{x}{2}\right]\right]}{|x+5|}=\lim _{x \rightarrow 5} \frac{2}{x+5}=\frac{\lim _{x \rightarrow 5} 2}{\lim _{x \rightarrow 5}(x+5)}=\frac{2}{10}=\frac{1}{5} .
$$

3. Find the limit if it exists and explain. Assume that the real functions $f(x)$ and $g(x)$ have limits

$$
\lim _{x \rightarrow a} f(x)=L, \quad \lim _{x \rightarrow a} g(x)=M .
$$

(a) $\lim _{x \rightarrow a}(2 g(x)+3)^{4}$

One uses the power law, the sum law and the constant multiple law

$$
\begin{aligned}
\lim _{x \rightarrow a}(2 g(x)+3)^{4} & =\left(\lim _{x \rightarrow a}(2 g(x)+3)\right)^{4} \\
& =\left(\lim _{x \rightarrow a} 2 g(x)+\lim _{x \rightarrow a} 3\right)^{4} \\
& =\left(2 \lim _{x \rightarrow a} g(x)+\lim _{x \rightarrow a} 3\right)^{4} \\
& =(2 L+3)^{4}
\end{aligned}
$$

(b) $\lim _{x \rightarrow \infty} \frac{g(x)}{f(x)+g(x)}$

The denominator limit is by the sum rule

$$
\lim _{x \rightarrow \infty}(f(x)+g(x))=\lim _{x \rightarrow \infty} f(x)+\lim _{x \rightarrow \infty} g(x)=L+M .
$$

If we assume that $L+M \neq 0$ we may apply the quotient rule.

$$
\lim _{x \rightarrow \infty} \frac{g(x)}{f(x)+g(x)}=\frac{\lim _{x \rightarrow \infty} g(x)}{\lim _{x \rightarrow \infty}(f(x)+g(x))}=\frac{L}{L+M}
$$

(c) $\lim _{x \rightarrow a} \sqrt{f(x)} \cdot \sqrt[3]{g(x)}$.

The square root limit law requires that we assume that $L>0$. Then

$$
\lim _{x \rightarrow a} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow a} f(x)}=\sqrt{L} .
$$

By the product and cube root laws,

$$
\lim _{x \rightarrow a} \sqrt{f(x)} \cdot \sqrt[3]{g(x)}=\left(\lim _{x \rightarrow a} \sqrt{f(x)}\right)\left(\lim _{x \rightarrow a} \sqrt[3]{g(x)}\right)=\sqrt{L} \sqrt[3]{\lim _{x \rightarrow a} g(x)}=\sqrt{L} \cdot \sqrt[3]{M}
$$

4. Let the function $g(x)$ be defined piecewise byg $(x)= \begin{cases}0, & \text { if } x<-5 ; \\ \sqrt{25-x^{2}}, & \text { if }-1 \leq x<3 ; \\ x+1, & \text { if } 3 \leq x .\end{cases}$
(a) Sketch the graph of $y=g(x)$.

(b) Find the limit if it exists and explain: $\lim _{x \rightarrow 3} g(x)$

The limit exists if both left and right limits exist at $x=3$ and they are equal. Using the left definition, by the difference and square laws,

$$
\lim _{x \rightarrow 3-}\left(25-x^{2}\right)=\lim _{x \rightarrow 3-} 25-\lim _{x \rightarrow 3-} x^{2}=25-\left(\lim _{x \rightarrow 3-} x\right)^{2}=25-3^{2}=16
$$

is positive. Hence we may apply the square root law

$$
\lim _{x \rightarrow 3-} g(x)=\lim _{x \rightarrow 3-} \sqrt{25-x^{2}}=\sqrt{\lim _{x \rightarrow 3-}\left(25-x^{2}\right)}=\sqrt{16}=4
$$

Using the right definition, the right limit follows from the sum law

$$
\lim _{x \rightarrow 3+} g(x)=\lim _{x \rightarrow 3+}(x+1)=\lim _{x \rightarrow 3+} x+\lim _{x \rightarrow 3+} 1=3+1=4 .
$$

Since both left and right limits exist and are equal, the limit exists and equals 4 .
5. (a) Consider the function $f(x)$ depicted in the graph. Draw the graph of the transformed function $g(x)$ on the same graph, where

$$
g(x)=-2 f(x-1)
$$

(b) Which of the following parametric curves is depicted in the diagram? Why?
(A) $\left\{\begin{array}{l}x=5 \cos 3 t \\ y=5 \sin 2 t \\ 0 \leq t \leq 2 \pi\end{array}\right.$
(B) $\left\{\begin{array}{l}x=5 \cos 3 t \\ y=5 \sin 2 t \\ 0 \leq t \leq \pi\end{array}\right.$
(C) $\left\{\begin{array}{l}x=5 \cos 2 t \\ y=5 \sin 3 t \\ 0 \leq t \leq \pi\end{array}\right.$

The parametric curve giving this figure is (B).
In (A), because $0 \leq t \leq 2 \pi$, both $x(t)=5 \cos 3 t$ and $y(t)=5 \sin 2 t$ run through respectively three and two complete cycles and the curve returns to their starting point at $t=2 \pi$. Thus the figure is a complete Lissajous Figure which continues whithout start and end.
In (C), as t runs through $0 \leq t \leq \pi$, the $x(t)=5 \cos 2 t$ runs through one cycle from 5 to -5 to 5 . This is not the case in the diagram, where x runs from 5 to -5 to 5 to -5 .
For comparison, here are the figures (A) and (C).

