Math 1310

Midterm exam 1

1. Function transformation. Consider the function f(x) depicted in the graph. Draw a graph of the transformed function

$$-af(x+b)$$

on the same axes.

- 2. Specify the domain and range of $f(x) = \ln(100 x^2)$.
- 3. Find the equation y = mx + b for the secant line of the function $f(x) = x^2 + 3x 1$ that passes between points x = 0 and x = 1.
- 4. Find the inverse function $f^{-1}(y) = x$ of $f(x) = y = \ln\left(\frac{x}{1-x}\right)$. Determine the domain and range of f and f^{-1} .

Solution:	
	$e^y = \frac{x}{1-x}$
SO	
(1	$(x - x)e^y = x$
SO	
e	$y = x + xe^y$
so	
	$x = \frac{e^y}{1 + e^y}$
from which we deduce	
f^-	$^{-1}(y) = \frac{e^y}{1+e^y}.$

5. Limits: Compute the following limits, or explain why the limit does not exist.

(a)
$$\lim_{x \to 5} \frac{|x-5|}{x-5}$$
.
(b) $\lim_{x \to -2} \frac{x^2 + 3x + 2}{x^2 - 4}$
(c) $\lim_{x \to \infty} \frac{2x^2 + 1}{x^2 - 4}$

6. Consider the parametric equations

(a)
$$x = \cos(t), \quad y = \sin(t) + 1$$

(b)
$$x = 2\cos(t) + 1$$
, $y = 2\sin(t)$

(c) $x = \cos(2t), \quad y = \frac{1}{2}\sin(4t)$

Match each of them with the corresponding curve in the figure below. Explain your choice.

Figure 1: