MATH 1310-4 - Midterm 1 Fall 2017

Name and Unid:

Date: 09/15/2017
Instructor: William Nesse
No phones, calculators, or notes. Show all your work for full credit.

1. (20 points) Function transformation. Consider the function $f(x)$ depicted in the graph. Draw a graph of the transformed function

$$
-2 f(x+3)
$$

on the same axes.

2. (30 points) Compute the following limits, or explain why the limit does not exist.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-4}$.

Solution:

$$
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{(x-2)(x+3)}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{x+3}{x+2}=\frac{5}{4} .
$$

(b) $\lim _{x \rightarrow-2} \frac{x+2}{|x+2|}$.

Solution:

$$
\begin{gathered}
\lim _{x \rightarrow-2^{+}} \frac{x+2}{x+2}=1 \\
\lim _{x \rightarrow-2^{-}} \frac{x+2}{-x-2}=-1
\end{gathered}
$$

the one-sided limits do not agree so the limit does not exist.
(c) $\lim _{x \rightarrow \infty} \frac{x^{3}+\frac{2}{x^{2}}}{2 x^{3}+x}$

Solution: One must transform the expression by multiplying top and bottom by one over the leading power:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{x^{3}+\frac{2}{x^{2}}}{2 x^{3}+x}\right)\left(\frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}\right) \\
= & \lim _{x \rightarrow \infty} \frac{1+\frac{2}{x^{5}}}{2+\frac{1}{x^{2}}}=\frac{1+0}{2+0}=\frac{1}{2}
\end{aligned}
$$

3. (20 points) Find the equation of the secant line $y=m x+b$ of the function $f(x)=x+\frac{1}{x}$ that passes between points $x=\frac{1}{2}$ and $x=1$.

Solution: The secant line goes through the points $(1 / 2, f(1 / 2))=(1 / 2,3 / 2)$ and $(1, f(1))=$ $(1,2)$. Then the slope is

$$
m=\frac{2-(3 / 2)}{1 / 2}=1
$$

Using the point-slope formula

$$
1 \cdot 1+b=2 \Longrightarrow y=x+1
$$

Math 1310-4
4. (20 points) Find the inverse function $f^{-1}(y)=x$ of

$$
f(x)=y=\ln \left(\frac{2 x}{x-1}\right) .
$$

Solution:

$$
\begin{gathered}
e^{y}=\frac{2 x}{x-1}, \quad(x-1) e^{y}=2 x, \quad x e^{y}-e^{y}=2 x, \quad x\left(e^{y}-2\right)=e^{y} \\
x=\frac{e^{y}}{e^{y}-2}
\end{gathered}
$$

so,

$$
f^{-1}(y)=\frac{e^{y}}{e^{y}-2} .
$$

5. (20 points) Specify the domain and range of $f(x)=5 \ln \left(9-x^{2}\right)$.

Solution: $\ln (x)$ is defined for positive numbers, so f is defined for

$$
0<9-x^{2}, \quad x^{2}<9, \quad-3<x<3 .
$$

So the domain is $(-3,3)$. For the range: $9-x^{2}$ inputs $(0,9)$ into log. So the range of f is $(-\infty, 5 \ln (9))=(-\infty, 10 \ln (3))$.
6. (20 points) Consider the parametric equations defined for the time interval $0 \leq t \leq 2 \pi$.

1. $x(t)=2 \cos (t), \quad y(t)=2 \sin (t)$
2. $x(t)=2 \cos \left(\frac{t}{2}\right), \quad y(t)=2 \sin (t)$
3. $x(t)=\cos (t)+2, \quad y(t)=\sin (t)-1$

Match each of them with the corresponding curve in the figure below. Explain your choice.

Figure 1

Solution: A and B are clearly circles.
$1=\mathrm{B}$,
$2=C$,
$3=\mathrm{A}$.

