Math 1310

Midterm Exam 2

1. (20 points) Compute the derivative of $f(x)=a x-b x^{2}$ using the limit-based definition.

Solution:

$$
\begin{array}{r}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{a(x+h)-b(x+h)^{2}-a x+b x^{2}}{h} \\
=\lim _{h \rightarrow 0} \frac{a x+a h-b x^{2}-b 2 x h-b h^{2}-a x+b x^{2}}{h} \\
=\lim _{h \rightarrow 0} \frac{a h-b 2 x h-b h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h}{h} \frac{a-b 2 x-b h}{1} \\
=a-b 2 x .
\end{array}
$$

2. (20 points) Determine if the derivative of

$$
f(x)= \begin{cases}2 x-1, & x<2 \\ x^{2}-1, & x \geq 2\end{cases}
$$

exists at $x=2$.

Solution:

$$
\begin{array}{r}
f\left(2^{-}\right)=3, \quad f\left(2^{+}\right)=3 \\
f^{\prime}(x)= \begin{cases}2, & x<2 \\
2 x, & x \geq 2\end{cases} \\
f^{\prime}\left(2^{-}\right)=2 \neq f^{\prime}\left(2^{+}\right)=4 .
\end{array}
$$

The left and right limits of the derivative do not agree so the limit does not exists at $x=2$.
3. (30 points) Match the graphs of the four functions ((A)-(D)) given with the graphs of their derivatives ((a)-(d)). Explain your answer. For example, identify some distinct feature(s) of the graphs.
(A)

(B)

Page 2

Solution:

4. (50 points) Compute the following derivatives using the derivative rules
(a) $\frac{d}{d x}\left(4 x^{4}-2 x^{3}+1\right)$
(b) $\frac{d}{d x}(\arctan (2 x) \ln (x))$
(c) $\frac{d}{d x}\left(\frac{e^{4 x}}{\arccos (x)}\right)$
(d) $\frac{d}{d x} \ln \left(\frac{1}{x}\right)$
(e) $\frac{d}{d x} \cos \left(x^{2}+\sin (x)\right)$

Solution:

(a) $\frac{d}{d x}\left(4 x^{4}-2 x^{3}+1\right)=16 x^{3}-6 x^{2}$
(b) $\frac{d}{d x}(\arctan (2 x) \ln (x))=\frac{1}{x} \arctan (2 x)+2 \ln (x) \frac{1}{1+4 x^{2}}$
(c)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{e^{4 x}}{\arccos (x)}\right) & =\frac{4 \arccos (x) e^{4 x}-e^{4 x} \frac{-1}{\sqrt{1-x^{2}}}}{[\arccos (x)]^{2}} \\
& =e^{4 x} \frac{4 \arccos (x)+\left(1-x^{2}\right)^{-\frac{1}{2}}}{[\arccos (x)]^{2}} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\frac{d}{d x} \ln \left(\frac{1}{x}\right) & =\frac{1}{\frac{1}{x}} \frac{d}{d x} \frac{1}{x} \\
& =-x \cdot \frac{1}{x^{2}}=-\frac{1}{x}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\frac{d}{d x} \cos \left(x^{2}+\sin (x)\right) & =-\sin \left(x^{2}+\sin (x)\right) \frac{d}{d x}\left(x^{2}+\sin (x)\right) \\
& =\sin \left(x^{2}+\sin (x)\right)(-(2 x+\cos (x)))
\end{aligned}
$$

5. (20 points) Consider the curve defined by the equation $\sqrt{x y+1}=x-1$
(a) Find an expression for $\frac{d y}{d x}$
(b) Demonstrate that the point $(6,4)$ lies on this curve. (pick $n=1,5,9, .$.
(c) Find the slope $d y / d x$ of the tangent line to the curve at the point in (b).

Solution:

(a)

$$
\frac{1}{2 \sqrt{x y+1}}\left(y+x y^{\prime}\right)=1
$$

Rearranging,

$$
y^{\prime}=\frac{2 \sqrt{x y+1}-y}{x}
$$

(b) We substitute $x=6, y=4$ into the equation, and find that it works. (c)

$$
y^{\prime}=\frac{2 \times 5-4}{6}=1 .
$$

6. (20 points) Use the linear approximation of $f(x)=\sqrt[3]{x}$ to estimate the value of $\sqrt[3]{1001}$. Leave your answer as an expression involving sums and fractions of whole numbers. Hint: a easy-tocompute nearby point is $\sqrt[3]{1000}=10$. Show your work.

Solution: We know that $f(1000)=\sqrt[3]{1000}=10$ because $10^{3}=1000$, is a known point nearby $x=1001$. Also,

$$
f^{\prime}(x)=\left(x^{1 / 3}\right)^{\prime}=\frac{1}{3} x^{-2 / 3},
$$

so

$$
f^{\prime}(1000)=\frac{1}{3}(100)^{-2 / 3}=\frac{1}{3}(10)^{-2}=\frac{1}{300}
$$

so,

$$
f(1001) \approx 10+\frac{1}{300}(1001-1000)=10-\frac{1}{300}
$$

note

$$
\frac{1}{300}=0.3333333 \times 0.001=0.00333333
$$

so,

$$
f(1001) \approx 10-\frac{1}{300}=10.00333333 .
$$

The ten-decimal-point value is $\sqrt[3]{1001}=10.0033322228$. The linear approximation is accurate to the first five decimal places.

