
Math 1210 § 4.
Treibergs

Third Midterm Exam Name: Practice Problems
November 5, 2015

1. For the functions f(x) and g(x) defined on the closed interval [−1, 2], decide whether the
Mean Value Theorem for Derivatives applies. If it does, find all possible values of c; if not,
state the reason. For each function, sketch the graph on the given interval. (Text problems
189[9,21].)

f(x) = x+ |x|; g(x) =
x

x− 3
.

The Mean Value Theorem for Derivatives cannot be applied to f(x) because it is not
differentiable at x = 0 where it has a kink. Indeed, the conclusion fails: f(−1) = 0 and
f(2) = 4 so the secant line from x = −1 to x = 2 has the slope 4

3 . However, f ′(x) = 0 if
x < 0 and f ′(x) = 2 if x > 0. Thus there is no intermediate point c where the derivative
exists and equals 4

3 .

g(x) is a rational function, thus is differentiable wherever it doesn’t blow up, which occurs at
x = 3. So the Mean Value Theorem for Derivatives applies to g(x) because it is continuous
on [−1, 2] and differentiable on (−1, 2). We wish to solve the equation

g(2)− g(−1)

2− (−1)
= g′(c)

for c ∈ (−1, 2). Substituting, g′(x) = (x− 3)−1 − x(x− 3)−2 = −3(x− 3)−2

−3

4
=
−2− 1

4

3
=

2
2−3 −

−1
(−1)−3

2− (−1)
= − 3

(c− 3)2

Thus 4 = (c− 3)2 or ±2 = c− 3 so c = 5 or c = 1. Only 1 ∈ (−1, 2) so that c = 1 is the
desired value.
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2. Suppose F (x) = D for all x ∈ (a, b). Show that then there is a constant C such that
f(x) = Dx+ C for all x ∈ (a, b). (Text problem 189[31].)

This cries for an application of the Mean Value Theorem for Derivatives because information
about the derivative is given on an interval and information about the function itself is
sought.

We claim that there is a constant C so that H(x) = F (x)−Dx = C for all x ∈ (a, b). Pick
any point x1 ∈ (a, b). Let C = F (x1)−Dx1. We now show that the difference H(x) is this
same C for all x. Indeed, pick any other x ∈ (a, b). The function H is differentiable in (a, b)
because it is the difference of differentiable functions. Hence it is continuous in the closed
interval from x1 to x and differentiable in the same open interval. Hence we may apply the
Mean Value Theorem for Derivatives in this interval. That means that there is a point ξ
between x1 and x such that

H(x)−H(x1)

x− x1
= H ′(ξ).

But because
H ′(ξ) = F ′(ξ)−D = 0

we conclude that
F (x)−Dx = H(x) = H(x1) = C.

In other words, for every x ∈ (a, b), F (x) = Dx+ C as desired.

3. Using the Bisection Method, find a real root of f(x) in the interval [0, 1] accurate to two
decimal places.

f(x) = x4 − 5x3 + 1 = 0.

First, observe that f(0) = 1 and f(1) = −3 so that the continuous function f(x) crosses the
x-axis in between. Second, at each stage, we shall compute the left and right endpoints, as
well as the error that the midpoint makes in approximating the root. f(x) will be positive at
all left endpoints `n and negative at all right endpoints rn. The midpoint is mn = 1

2 (`n+rn).
Because the interval is bisected at each stage starting from `1 = 0 and r1 = 1, the total
length of the interval is

rn − `n =
1

2n−1
(r1 − `1) =

1

2n−1

The midpoint is at most half of the length of the interval from any point in the interval, so
the distance between root ρ and the midpoint is

|mn − ρ| ≤
1

2
(rn − `n) =

1

2n
(r1 − `1) =

1

2n
.

For two decimal point accuracy, this number has to be less than .005. Solving .005 = 2−n

we find n = 7.64 thus we need to repeat the halving eight times (2−8 = 0.00390625). Let
us proceed with the bisection. At each stage f(`n) > 0 and f(rn) < 0. We determine
f(mn). If it is positive, set `n+1 = mn and rn+1 = rn. If it is negative, set `n+1 = `n and
rn+1 = mn. If it is zero, stop because mn is the root.

Looking at the table, the Bisection Method approximation to the root is ρ ≈ 0.61 which

makes an error less than 0.00390625 which means it’s good to two decimal places.
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n l_n m_n r_n f(m_n)

--- ------------ ------------ ------------ ------------

1 0 0.5 1.0 0.4375

2 0.5 0.75 1.0 -0.7929688

3 0.5 0.625 0.75 -0.06811523

4 0.5 0.5625 0.625 0.2102203

5 0.5625 0.59375 0.625 0.07768345

6 0.59375 0.609375 0.625 0.006471694

7 0.609375 0.6171875 0.625 -0.03039622

8 0.609375 0.61328125 0.6171875 -0.01185633

4. Using Newton’s Method, find a real root of f(x) in the interval [0, 1].

f(x) = x4 − 5x3 + 1 = 0.

It’s the same function as in the previous problem so we may compare. The sequence of
approximations to the zero ρ proceeds by improving each successive approximation of ρ as
follows. One computes the tangent line to the graph of f(x) at xn and takes the next point
to be the intersection of the tangent line with the x-axis. The point slope form for a point
(x, y) on the tangent line through (xnf(xn)) with slope f ′(xn) is

y − f(xn) = f ′(xn)(x− xn).

The next point corresponds to y = 0 in this equation or

xn+1 = xn −
f(xn)

f ′(xn)
.

For our function, f ′(x) = 4x3 − 15x2, the formula reads

xn+1 = xn −
x4n − 5x3n + 1

4x3n − 15x2n
.

Starting at x1 = 1 we get the following sequence.

n x_n

--- -----------

1 1.0000000

2 0.7272727

3 0.6266341

4 0.6111192

5 0.6107597

6 0.6107595

7 0.6107595

8 0.6107595

The error at each step is the square of the previous error. Seven decimal place accuracy is
obtained already in the sixths iteration. The root is ρ = 0.6107595 .
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5. Using the Fixed Point Method, find a real root of f(x) in the interval [0, 1].

f(x) = x4 − 5x3 + 1 = 0.

To use the fixed point method, the equation f(x) = 0 has to be converted to the fixed point
form x = g(x). Then the method proceeds by starting at x1 = 1 and then iterating

xn+1 = g(xn).

The catch is that |g′(x)| < 1 must hold in the vicinity of the root ρ. Note that f ′(1) = −10
so that we may try to add 10x to both sides to find

x4 − 5x3 + 1 + 10x = 10x

or

x = g(x) =
1

10

(
x4 − 5x3 + 1

)
+ x

Starting at x1 = 1 we iterate xn+1 = g(xn) to obtain

n x_n n x_n

--- ----------- ---- -----------

1 1.0000000 14 0.6107951

2 0.7000000 15 0.6107784

3 0.6525100 16 0.6107695

4 0.6317286 17 0.6107648

5 0.6215997 18 0.6107623

6 0.6164404 19 0.6107610

7 0.6137570 20 0.6107603

8 0.6123467 21 0.6107599

9 0.6116015 22 0.6107597

10 0.6112066 23 0.6107596

11 0.6109970 24 0.6107595

12 0.6108857 25 0.6107595

13 0.6108266 26 0.6107595

The Fixed Point Method also converges to the zero ρ = 0.6107595 but at a geometric rate.

6. Calculate the following indefinite integrals.

(a)

∫
sec2 x− 5 sinx dx

(b)

∫
y3(y2 + 1)2
√
y

dy

(c)

∫
sin z√

1 + cos z
dz

∫
sec2 x− 5 sinx dx =

∫
sec2 x dx− 5

∫
sinx dx = tanx+ 5 cosx+ C∫

y3(y2 + 1)2
√
y

dy =

∫
y3(y4 + 2y2 + 1)

√
y

dy =

∫
y7 + 2y5 + y3

√
y

dy =

∫
y

13
2 + 2y

9
2 + y

5
2 dy

=

∫
y

13
2 dy + 2

∫
y

9
2 dy +

∫
y

5
2 dy =

2

15
y

15
2 +

4

11
y

11
2 +

2

7
y

7
2 + C∫

sin z√
1 + cos z

dz = −
∫

(1 + cos z)
− 1

2 (− sin z) dz = −2 (1 + cos z)
1
2 + C
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7. Evaluate the integral I =

∫
cos5

[(
x2 + 3

)7]
sin
[(
x2 + 3

)7] (
x2 + 3

)6
x dx.

Substitute
u = cos

[(
x2 + 3

)7]
.

Then
du = −14 sin

[(
x2 + 3

)7] (
x2 + 3

)6
x dx

Dividing by −14 we insert in the integral to find

I = − 1

14

∫
u5 du = − 1

6 · 14
u6 + C.

Substituting u back

I = − 1

84
cos6

[(
x2 + 3

)7]
+ C.

8. Find f(x) where f ′′(x) = 3 3
√
x+ 7.

We integrate twice.

f ′(x) =

∫
f ′′(x) dx = 3

∫
(x+ 7)

1
3 dx = 3 · 3

4
(x+ 7)

4
3 + C1;

f(x) =

∫
f ′(x) dx =

∫
9

4
(x+ 7)

4
3 + C1 dx =

=
9

4
· 3

7
(x+ 7)

7
3 + C1x+ C2 =

27

28
(x+ 7)

7
3 + C1x+ C2

where C1 and C2 are two arbitrary constants of integration.

9. Find each sum.(a.) S =

n∑
i=1

(
i2 − 3i+ 5

)
(b.) T =

n∑
i=1

2 · 3i−1

For the first sum, we recall the formulæ

n∑
i=1

1 = n;

n∑
i=1

i =
n(n+ 1)

2
;

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

Using linearity, the first sum becomes

S =

n∑
i=1

(
i2 − 3i+ 5

)
=

n∑
i=1

i2 − 3

n∑
i=1

i+ 5
∑
i=1

1

=
n(n+ 1)(2n+ 1)

6
− 3 · n(n+ 1)

2
+ n =

n3 − 3n2 − n
3

Because 2 = 3− 1, the second is a telescoping sum

T =

n∑
i=1

2 · 3i−1 =

n∑
i=1

(
3i − 3i−1

)
= (3− 1) +

(
32 − 3

)
+
(
33 − 32

)
+ · · ·+

(
3n − 3n−1

)
= 3n − 1 .

Alternately, we may use the formula for a geometric sum

k∑
j=0

arj = a
1− rk+1

1− r
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with a = 2, j = i− 1, r = 3 and k = n− 1 so that

T =

n∑
i=1

2 · 3i−1 =

n−1∑
j=0

2 · 3j = 2
1− 3n

1− 3
= 3n − 1.

10. Using geometry, find a lower and upper estimate for the integral. Then find the value of the
definite integral by approximating with a Riemann Sum and taking the limit. Check your
answer by computing the integral using antiderivatives.∫ 5

−3
7x+ 2 dx

The increasing function f(x) = 7x + 2 ranges between f(−3) = −19 to f(5) = 37. Thus
the integral I lies between

−152 = −19[5− (−3)] ≤ I ≤ 37[5− (−3)] = 296 .

Since the function f(x) = 7x + 2 is continuous on the interval [−3, 5] we know from the
Integrability Theorem that the function is integrable and the limit of any sequence of
Riemann sums as partitions get finer will converge to the integral. Let’s use the partition
of the interval [−3, 5] of length 5− (−3) = 8 into n equal parts. Thus for i = 0, . . . , n, the
partition points, width and sample points are

xi = −3 +
8i

n
; ∆xi = xi − xi−1 =

8

n
; x̄i = xi = −3 +

8i

n
.

The Riemann sum with this data is

n∑
i=1

f(x̄i)∆xi =

n∑
i=1

[
7

(
−3 +

8i

n

)
+ 2

]
8

n

=
7 · 82

n2

n∑
i=1

i− 8 · 19

n

n∑
i=1

1

=
448

n2
· n(n+ 1)

2
− 152

n
· n

=
224(n+ 1)

n
− 152

Taking the limit, the integral is∫ 5

−3
7x+ 2 dx = lim

n→∞

(
224(n+ 1)

n
− 152

)
= 224− 152 = 72 .

Using the antiderivatives we see∫ 5

−3
7x+ 2 dx =

[
7

2
x2 + 2x

]5
−3

=

[
7

2
52 + 2 · 5

]
−
[

7

2
(−3)2 − 2 · 3

]
=

7

2
(25− 9) + 2[5− (−3)] = 72
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11. Find

∫ 1

−2
x2 [[x]] dx. Recall: [[x]] is the greatest integer function. You may use

∫ b

0

x2 =
b3

3
.

Observe that

[[x]] =


−2, if −2 ≤ x < −1;

−1, if −1 ≤ x < 0;

0, if 0 ≤ x < 1;

1, if 1 ≤ x < 2;

Note that in the interval [−2, 1] the function [[x]] jumps at the integers, so that the function
[[x]] differs from i only at one point in the interval [i, i+ 1] so both functions have the same
integral over this interval. Thus we may split the integration into intervals [i, i + 1] and
replace [[x]] by i. Thus∫ 1

−2
x2 [[x]] dx =

∫ −1
−2

x2 [[x]] dx+

∫ 0

−1
x2 [[x]] dx+

∫ 1

0

x2 [[x]] dx

= −2

∫ −1
−2

x2 dx−
∫ 0

−1
x2 dx+ 0 ·

∫ 1

0

x2 dx

= −2

(∫ −1
0

x2 dx−
∫ −2
0

x2 dx

)
+

∫ −1
0

x2 dx

= −2

(
(−1)3

3
− (−2)3

3

)
+

(−1)3

3

= −2

(
−1

3
+

8

3

)
− 1

3
= −5.

12. Find d
dx of the functions

G(x) =

∫ x

0

3t4 +
3
√
t dt; H(x) =

∫ x

1

xt dt; I(x) =

∫ x

−x2

t dt√
1 + t2

.

Applications of the First Fundamental Theorem of Calculus.

G′(x) =
d

dx

∫ x

0

3t4 +
3
√
t dt = 3x4 + 3

√
x .

x is a constant as far as the integration with respect to t is concerned, so may be factored
out of the integral first. Then the product rule is used.

H ′(x) =
d

dx

(
x

∫ x

1

t dt

)
=

∫ x

1

t dt+ x
d

dx

∫ x

1

t dt =

[
x2

2

]x
1

+ x · x =
3

2
x2 − 1

2
.

To use the Chain Rule, we put

F (u) =

∫ u

0

t dt√
1 + t2

so F ′(u) =
u√

1 + u2
.

Hence

I ′(x) =
d

dx

∫ x

−x2

t dt√
1 + t2

=
d

dx

(
F (x)− F (−x2)

)
=

x√
1 + x2

− (−x2)√
1 + (−x2)2

· (−2x) =
x√

1 + x2
− 2x3√

1 + x4
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13. Find the following definite integrals.

(a)

∫ 7

1

(1 +
√
t)3

4
√
t

dt

(b)

∫ 4

2

1 + τ2

(1 + 3τ + τ3)4
dτ

(c)

∫ π/2

0

cos θ cos(π sin θ) dθ

∫ 7

1

(1 +
√
t)3

4
√
t

dt =

∫ 7

1

1 + 3
√
t+ 3t+ t3/2

4
√
t

dt

=

∫ 7

1

t−1/4 + 3t1/4 + 3t3/4 + t5/4 dt

=

[
4

3
t3/4 +

12

5
t5/4 +

12

7
t7/4 +

4

9
t9/4

]7
1

=
4

3
· 73/4 +

12

5
· 75/4 +

12

7
· 77/4 +

4

9
· 79/4 − 4

3
− 12

5
− 12

7
− 4

9
.

Let u = 1 + 3τ + τ3. Then du = (3 + 3τ2) dτ = 3(1 + τ2) dτ , u = 15 when τ = 2 and u = 77
when τ = 4. Hence ∫ 4

τ=2

1 + τ2

(1 + 3τ + τ3)4
dτ =

1

3

∫ 77

u=15

u−4 du

=
1

3

[
−1

3
u−3

]77
u=15

=
1

9 · 153
− 1

9 · 773

Let υ = π sin θ so dυ = π cos θ dθ. Also υ = 0 when θ = 0 and υ = π when θ = π/2. Hence∫ π/2

θ=0

cos θ cos(π sin θ) dθ =
1

π

∫ π

υ=0

cos υ dυ

=
1

π

[
sin υ

]π
υ=0

=
1

π

[
sinπ − sin 0

]
= 0.

14. Using symmetry and periodicity, evaluate the following integral.∫ 7π

0

| sin 2x| dx

The function is π/2-periodic. To see it, use the trig identity sin(θ + π) = − sin θ so

f
(
x+

π

2

)
=
∣∣∣sin [2(x+

π

2

)]∣∣∣ = |sin [2x+ π]| = | − sin[2x]| = | sin[2x]| = f(x)
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Using the next problem, we see that integrating over any interval of length equal to a period
gives the same value. Also the interval [0, 7π] contains 14 periods. Thus

I =

∫ 7π

0

| sin 2x| dx = 14

∫ π/2

0

| sin 2x| dx = 14

∫ π/4

−π/4
| sin 2x| dx = 28

∫ π/4

0

| sin 2x| dx

because f(x) is even:

f(−x) = | sin[2(−x)]| = | − sin 2x| = | sin 2x| = f(x).

Now for 0 ≤ x ≤ π/4, sin 2x ≥ 0 so f(x) = | sin 2x| = sin 2x. It follows that the integral is

I = 28

∫ π/4

0

| sin 2x| dx = 28

∫ π/4

0

sin 2x dx = 28

[
−1

2
cos 2x

]π/4
x=0

= 14

[
− cos

π

2
+ cos 0

]
= 14

[
−0 + 1

]
= 14.

15. Let f(x) be a continuous p-periodic function on R. Show that the following holds any a.
(Text problem 258[49].) ∫ a+p

a

f(t) dt =

∫ p

0

f(t) dt.

The numbers kp are uniformly spaced on the real line as k runs through the integers. The
number a falls between two of these. Let k be an integer such that (k−1)p ≤ a < kp. Then
kp ≤ a+ p < (k + 1)p. By interval additivity,∫ a+p

t=a

f(t) dt =

∫ kp

t=a

f(t) dt+

∫ a+p

τ=kp

f(τ) dτ

Now change variables in each integral. Let t = (k− 1)p+u. Then du = dt, u = a− (k− 1)p
when t = a and u = p when t = kp. Let τ = kp+ v. Then dv = dτ , v = 0 when t = kp and
v = a− (k − 1)p when τ = a+ p. It follows that∫ kp

t=a

f(t) dt+

∫ a+p

τ=kp

f(τ) dτ =

∫ p

u=a−(k−1)p
f [(k − 1)p+ u] du+

∫ a−(k−1)p

v=0

f [kp+ v] dv

Now let us use periodicity. f(x) = f(p+x) = f(2p+x) and so on. Thus f [(k−1)p+u] = f [u]
and f [kp+ v] = f [v]. Substituting, the integrals become∫ p

u=a−(k−1)p
f [(k − 1)p+ u] du+

∫ a−(k−1)p

v=0

f [kp+ v] dv

=

∫ p

u=a−(k−1)p
f [u] du+

∫ a−(k−1)p

v=0

f [v] dv

=

∫ a−(k−1)p

v=0

f [v] dv +

∫ p

u=a−(k−1)p
f [u] du

=

∫ p

v=0

f [v] dv

by interval additivity, as desired.
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16. Use symmetry or periodicity to help you evaluate the following integrals.

(a)

∫ 2

−2
|x5|+ x7 dx

(b)

∫ π/2

−π/2
(sin y + cos y)2 dy

(c)

∫ 3

−3

z2 sin3 z cos5 z

(1 + sin4 z)3
dz

Observe that x7 is odd and |x| is even so |x5| is even. Then use x = |x| if x ≥ 0.∫ 2

−2
|x5|+ x7 dx =

∫ 2

−2
|x5| dx+

∫ 2

−2
x7 dx = 2

∫ 2

0

|x5| dx+ 0

= 2

∫ 2

0

x5 dx = 2

[
x6

6

]2
0

=
26

3
− 0 =

64

3
.

Observe that sin y is odd and cos y is even so sin y cos y is odd. Then notice that sin2 y +
cos2 y = 1. Finally, the area under a constant is length times height.∫ π/2

−π/2
(sin y + cos y)2 dy =

∫ π/2

−π/2
sin2 y + 2 sin y cos y + cos2 y dy

=

∫ π/2

−π/2
sin2 y + cos2 y dy +

∫ π/2

−π/2
2 sin y cos y dy

=

∫ π/2

−π/2
1 dy + 0 = π.

Observe that z, sin z are odd and cos z is even. Thus sin2 z, sin4 z, (1 + sin4 z)−3 and cos5 z
are all even because odd times odd is even and a function of even is even. Also sin3 z is
odd. The integrand is a product of even functions times a single odd function, thus odd.
Hence ∫ 3

−3

x2 sin3 z cos5 z

(1 + sin4 z)3
dz = 0.

17. Sketch the region bounded by the graphs of the equations. Show a typical slice. Make an
estimate of the area. Set up an integral for the area and evaluate it.

x = y2 − 2y, x− y − 4 = 0.

Both equations express x as a function of y, therefore it is natural to integrate wth respect
to y, adding together infinitesimally narrow horizontal strips. The first x = y2 − 2y is a
parabola opening to the right which is cut by the second x = y + 4, a line.
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One can estimate the area by counting the number of unit squares in the graph. That gives
an estimate of A ≈ 21. They intersect when

y2 − 2y = x = y + 4

which is equivalent to
0 = y2 − 3y − 4 = (y − 4)(y + 1)

whose roots are y = 4,−1. Thus the intercepts are the points (8, 4) and (3,−1). The area
is then the sum of strips from the parabola to the line. Thus the total area is

A =

∫ 4

y=−1

[
y + 4

]
−
[
y2 − 2y

]
dy

=

∫ 4

y=−1
3y + 4− y2 dy

=

[
3

2
y2 + 4y − 1

3
y3
]4
y=−1

=
3

2

[
42 − (−1)2

]
+ 4 [4− (−1)]− 1

3

[
43 − (−1)3

]
=

3

2
· 15 + 4 · 5− 1

3
· 65 =

125

6
≈ 20.833.

18. Find the area of the triangle with vertices at (−1, 4), (2,−2) and (5, 1) by integration. (Text
problem 280[30].)

The equation of a line through the points (x1, y1) and (x2, y2) is

y − y1 =
y2 − y1
x2 − x1

· (x− x1)

The equation of the line from (−1, 4) to (2,−2) is

y − 4 =
−2− 4

2− (−1)
(x+ 1) = −2(x+ 1) or y = −2x+ 2.
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The equation of the line from (2,−2) to (5, 1) is

y − (−2) =
1− (−2)

5− 2
(x− 2) = x− 2 or y = x− 4.

The equation of the line from (5, 1) to (−1, 4) is

y − 1 =
4− 1

−1− 5
(x− 5) = −1

2
(x− 5) or y = −1

2
x+

7

2
.

The x-coordinate of the second vertex falls between the other two. Its y-cooodinate is below
the line from (−1, 4) to (5, 1). Thus the area of the triangle is the sum of the areas of the
sub-triangles to the left and right of the line x = 2. Thus

A =

∫ 2

−1

[
−1

2
x+

7

2

]
−
[
−2x+ 2

]
dx+

∫ 5

2

[
−1

2
x+

7

2

]
−
[
x− 4

]
dx

=

∫ 2

−1

3

2
x+

3

2
dx+

∫ 5

2

−3

2
x+

15

2
dx

=

[
3

4
x2 +

3

2
x

]2
−1

+

[
−3

4
x2 +

15

2
x

]5
2

=

[
3

4

(
22 − (−1)2

)
+

3

2

(
2− (−1)

)]
+

[
−3

4

(
52 − 22

)
+

15

2

(
5− 2

)]
=

3

4
· 3 +

3

2
· 3− 3

4
· 21 +

15

2
· 3 =

27

2
= 13.5.

To check using geometry, the line x = 2 that cuts the corner at y = −2 and the opposite
line at y = 5/2 has length 9/2. Thinking of this line as the base of the triangles to the left
and to the right and adding their areas we get same answer.

A =
1

2
b1h1 +

1

2
b2h2 =

1

2
· 9

2
(2− (−1)) +

1

2
· 9

2
(5− 2) =

27

2
.
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