
Math 1210 § 4.
Treibergs

Second Midterm Exam Name: Practice Problems
Septmber 28, 2015

1. Use the limit definition of derivative to compute the derivative of f(x) =
1

1 + x2
at x = a.

Inserting the function into the limit of the difference quotient yields

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

1

1 + (a+ h)2
− 1

1 + a2

h

= lim
h→0

a2 − (a+ h)2

h[1 + (a+ h)2][1 + a2]

= lim
h→0

a2 − (a2 + 2ah+ h2)

h[1 + (a+ h)2][1 + a2]

= lim
h→0

−2ah− h2

h[1 + (a+ h)2][1 + a2]

= lim
h→0

−2a− h
[1 + (a+ h)2][1 + a2]

= − 2a

[1 + a2]2
.

2. Find the limits

(a) lim
h→0

sin(π + h)− sin(π)

h
This is the limit of a difference quotient with f(x) = sinx and a = π. The limit is the
derivative. Thus

lim
h→0

sin(π + h)− sin(π)

h
= lim
h→0

f(a+ h)− f(a)

h

= f ′(a) = cosπ = −1.

(b) Let g(x) and k(x) be differentiable at a. Find lim
h→0

g(a+ h)k(a+ h)2 − g(a)k(a)2

h
This is the limit of a difference quotient with f(x) = g(x)k(x)2 and x = a.

lim
h→0

g(a+ h)k(a+ h)2 − g(a)k(a)2

h
= lim
h→0

f(a+ h)− f(a)

h

= f ′(a) = g′(a)k(a)2 + 2g(a)k(a)k′(a).
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3. Suppose that f(x) is differentiable at x = a and that f(a) 6= 0. Use the limit of difference

quotients (and not the quaotient rule) to find
d

dx

(
1

f(x)

)
at x = a.

d

dx

(
1

f

)
(a) = lim

h→0

1

f(a+ h)
− 1

f(a)

h

= lim
h→0

f(a)− f(a+ h)

hf(a+ h)f(a)

= lim
h→0

(
− 1

f(a+ h)f(a)

)(
f(a+ h)− f(a)

h

)
= lim
h→0

(
− 1

f(a+ h)f(a)

)
· lim
h→0

(
f(a+ h)− f(a)

h

)
= −

(
1

f(a)2

)
· f ′(a) = − f

′(a)

f(a)2
.

We have used the fact that the differentiable function is continuous at a so that

lim
h→0

f(a+ h) = f(a).

4. Find the derivatives.

(a) f(x) = (1 + 2x3)4(5 + 6x7)8.

Using the product and chain rules,

f ′(x) = 4(1 + 2x3)3 · 6x2 · (5 + 6x7)8 + (1 + 2x3)4 · 8(5 + 6x7)7 · 42x6.

(b) g(x) =
(1 + 2x3)4

(5 + 6x7)8
.

Using the quotient and chain rules,

g′(x) =
4(1 + 2x3)3 · 6x2 · (5 + 6x7)8 − (1 + 2x3)4 · 8(5 + 6x7)7 · 42x6

(5 + 6x7)16
.

(c) k(x) =
sinx+ cosx

tanx
.

Using the quotient and chain rules,

k′(x) =
(cosx− sinx) · tanx− (sinx+ cosx) · sec2 x

tan2 x
.

(d) `(x) =
( cosx

sin 2x

)5
.

Using the chain and quotient rules,

`′(x) = 5
( cosx

sin 2x

)4
·
(
− sinx sin 2x− 2 cosx cos 2x

sin2 2x

)
.

(e) m(x) = sin2[sin(cosx)].

Using the chain rule,

m′(x) = 2 sin[sin(cosx)] cos[sin(cosx)] · cos(cosx) · (− sinx).
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5. The dial of a standard clock has a 10-centimeter radius. One end of an elastic string is
attached to the rim at 12 and the other to the tip of the 10-centimeter minute hand. At
what rate is the string stretching at 12:15 (assuming that the clock is not slowed by this
stretching)? If the hour hand is 7-centimeters long, how fast are the tips of the hands
separating at 12:20? (Text problems 124[72,73].)

Let us locate the tip of the minute hand t minutes after high noon. One revolution takes
60 minutes so that the coordinates are

(x(t), y(t)) =

(
10 sin

2π

60
t, 10 cos

2π

60
t

)
12:00 has coordinates (0, 10). Then the length of the string `(t) is from Pythagorean The-
orem

`(t) =
√

[0− x(t)]2 + [10− y(t)]2 =

√
100 sin2 2π

60
t+

[
10− 10 cos

2π

60
t

]2
=

√
100 sin2 2π

60
t+ 100− 200 cos

2π

60
t+ 100 cos

2π

60
t

= 10

√
2− 2 cos

2π

60
t

The rate of stretching is

`′(t) =
10 · 2 sin

2π

60
t · 2π

60

2

√
2− 2 cos

2π

60
t

=
π sin

π

30
t

3

√
2− 2 cos

π

30
t

At t = 15 minutes,

`′(15) =
π sin

π

2

3

√
2− 2 cos

π

2

=
π

3
√

2
centimeters per minute

Let us locate the tip of the hour hand t minutes after high noon. One revolution takes
12 · 60 = 720 minutes so that its coordinates are

(xh(t), yh(t)) =

(
7 sin

2π

720
t, 7 cos

2π

720
t

)
The angle α in radians between the minute and hour hand for 0 ≤ t ≤ 30 (when both hands
are in the right half face) is

α(t) =
2πt

60
− 2πt

720
=

11πt

360
.

Let c(t) denote the distance between the minute and hour hand. By the law of cosines
applied to the triangle with sides minute hand, hour hand and the segment tip to tip we
have

c(t) =
√

102 + 72 − 2 · 10 · 7 cosα(t) =
√

149− 140 cosα(t)
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Its derivative is

c′(t) =
140 sinα(t) · α′(t)

2
√

149− 140 cosα(t)

At t = 20 minutes, this is

c′(20) =
70 sinα(20) · α′(20)√
149− 140 cosα(20)

=
70 sin

11π

18
· 11π

360√
149− 140 cos

11π

18

whch is approximately 0.4500 centimeters per minute.

6. Find the third derivatives.

(a) f(x) = (4− 7x)5

f ′(x) = 5(4− 7x)4 · (−7) = −35(4− 7x)4

f ′′(x) = −35 · 4(4− 7x)3 · (−7x) = 980(4− 7x)3

f ′′′(x) = 980 · 3(4− 7x)2 · (−7) = −20580(4− 7x)2.

(b) g(x) =
2x2

6− x
.

It’s easier to first rewrite g(x) = 2x2(6−x)−1 and use product, power and chain rules.

g′(x) = 2 · 2x(6− x)−1 + 2x2 · (−1)(6− x)−2 · (−1)

= 4x(6− x)−1 + 2x2(6− x)−2

g′′(x) = 4(6− x)−1 + 4x · (−1)(6− x)−2 · (−1)+

2 · 2x(6− x)−2 + 2x2 · (−2)(6− x)−3 · (−1)

= 4(6− x)−1 + 8x(6− x)−2 + 4x2(6− x)−3

g′′′(x) = 4 · (−1)(6− x)−2 · (−1) + 8(6− x)−2 + 8x · (−2)(6− x)−3 · (−1)

+ 4 · 2x(6− x)−3 + 4x2 · (−3)(6− x)−4 · (−1)

= 12(6− x)−2 + 24x(6− x)−3 + 12x2(6− x)−4.

(c) h(x) = x cos
(π
x

)
.

It’s easier to first rewrite h(x) = x cos(πx−1) and use product, power and chain rules.

h′(x) = cos(πx−1)− x sin(πx−1) · (−πx−2)

= cos(πx−1) + πx−1 sin(πx−1)

h′′(x) = − sin(πx−1) · (−πx−2)− πx−2 sin(πx−1) + πx−1 cos(πx−1) · (−πx−2)

= πx−2 sin(πx−1)− πx−2 sin(πx−1)− π2x−3 cos(πx−1)

= −π2x−3 cos(πx−1)

h′′′(x) = −π2 · (−3)x−4 cos(πx−1) + π2x−3 sin(πx−1) · (−πx−2)

= 3π−2x−4 cos(πx−1)− π3x−5 sin(πx−1).
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7. A projectile is fired directly upward from the ground with an initial velocity of v0 feet per
second. Its height in t seconds is given by s = v0t−16t2 feet. What must the initial velocity
be for the projectile to reach a maximum height of 1 mile? (Text problem 129[35].)

The maximum occurs when the derivative vanishes. The derivative

ds

dt
= v0 − 32t

is zero at t = v0/32. There the height is

s
( v0

32

)
= v0

( v0
32

)
− 16

( v0
32

)2
=
v20
64
.

Since there are 5280 feet in a mile, we solve for v0 at the maximum height

5280 =
v20
64

so v0 = 581.3089 feet per second.

8. An object moves along a horizontal coordinate line in such a way that the position is s =
t3 − 3t2 − 24t− 6. Here s is measured in centimeters and t in seconds. When is the object
slowing down; that is, when is the speed decreasing? (Text problem 130[37].)

This is a little tricky because the speed is the absolute value of the velocity. The velocity is
the derivative of the position and may be either positive or negative.

v(t) =
ds

dt
= 3t2 − 6t− 24 = 3(t2 − 2t− 8) = 3(t− 4)(t+ 2)

The change in the velocity is given by the acceleration

a(t) =
dv

dt
= 6t− 6

If the velocity is positive, namely when t < −2 or when t > 4, the speed is the velocity, and
it is decreasing when the acceleration is negative, namely when t < 1.

If the velocity is negative, namely when −2 < t < 4, then the speed is negative of the
velocity and it is decreasing when the velocity is increasing, namely when the acceleration
is positive which is when t > 1.

Thus the speed is decreasing for both of the times t < −2 or 1 < t < 4 . During t < −2
the velocity is positive, which is decreasing because the acceleration is negative. During 1 <
t < 4 the velocity is negative and getting less negative (increasing) because the acceleration
is positive.

9. Assuming that the equation defines a differentiable function of x, find Dxy by implicit
differentiation.

x3
√
y − 1 = xy + 3

Viewing y = y(x) as a function of x we take derivatives with respect to x.

3x2
√
y − 1 +

x3

2
√
y − 1

· dy
dx

= y + x
dy

dx
.

Solving for the derivative (
x3

2
√
y − 1

− x
)
dy

dx
= y − 3x2

√
y − 1
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so

dy

dx
=
y − 3x2

√
y − 1

x3

2
√
y − 1

− x
=

2y
√
y − 1− 6x2(y − 1)

x3 − 2x
√
y − 1

.

10. Show that the normal line to x3 + y3 = 3xy at
(
3
2 ,

3
2

)
passes through the origin. (Text

problem 134[41].)

Viewing y = y(x) as a function of x we take derivatives with respect to x

3x2 + 3y2
dy

dx
= 3y + 3x

dy

dx
.

Solving for the derivative yields

(y2 − x)
dy

dx
= y − x2

or
dy

dx
=
y − x2

y2 − x
.

The slope of the tangent line is found by substituting the point in question (x, y) =
(
3
2 ,

3
2

)
which yields

mtan =

(
3

2

)
−
(

3

2

)2

(
3

2

)2

−
(

3

2

) = −1.

The slope of the normal line, which is perpendicular to the tangent line is then

mnorm = − 1

mtan
= − 1

−1
= 1.

The point-slope form of the normal line through the point
(
3
2 ,

3
2

)
is

y − 3

2
= 1 ·

(
x− 3

2

)
.

The point (x, y) = (0, 0) satisfies this equation, so lies on the normal line.

11. Assume that an oil spill is being cleaned up by deploying bacteria that consume the oil at 4
cubic feet per hour. The oil itself is modeled in the form of a thin cylinder, whose height
is the thickness of the oil slick. When the thickness is .001 foot, the cylinder is 500 feet in
diameter. If the height is decreasing at .0005 foot per hour, at what rate is the area of the
slick changing? (Text problem 141[8].)

(1.) Diagram and variables. Let t denote time in hours, h(t) the thickness in feet, D(t) the
diameter in feet, V (t) the volume in cubic feet and A(t) the area in square feet. (2.) Givens
and wanted values. We are given that

dV

dt
= −4,

dh

dt
= −.0005, when D = 500 and h = .001. We seek

dA

dt
at that instant.

6



(3.) Equation relating variables. Let us find the rate of diameter decrease and use it to find
the rate of area change. The volume of a cylinder is

V =
π

4
D2h.

(4.) Differentiate. Remembering that all variables change in time, we must use the product
rule to differentiate with respect to time

dV

dt
=
π

2
Dh

dD

dt
+
π

4
D2 dh

dt
.

(5.) Substitute known quantities and solve for wanted quantity. Solving for the rate of
diameter increase,

dD

dt
=

2

πDh

dV

dt
− D

2h

dh

dt
.

At the instant in question

dD

dt
=

2

π(500)(.001)
(−4)− 500

2(.001)
(−.0005) = 119.907 feet per hour

The thinning is faster than the volume decrease resulting in the growth of the diameter.
Now the area is related to the diameter by

A =
π

4
D2.

Differentiating
dA

dt
=
π

2
D
dD

dt
.

At the instant in question, the rate of area increase is

dA

dt
=
π

2
(500)(119.907) = 94174.74 square feet per hour.

Alternately, we could have eliminated D and expressed volume in terms of A before differ-
entiating.

12. A trough 12 feet long has the cross section in the form of an isosceles triangle (with base at
the top) 4 feet deep and 6 feet across. If water is filling the trough at a rate of 9 cubic feet
per minute, how fast is the water level rising when the water is 3 feet deep? (Text problem
149[37].)

(1.) Diagram and variables. The diagram shows a cross section of the trough. Let t be time
in minutes, V (t) volume of water in cubic feet, h(t) height of the water, w(t) width of the
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water and ` the length of the trough all in feet and A(t) the area of a section of the water
in square feet. (2.) Givens and wanted values. We are given that

dV
dt = 9, when h = 3 feet. We seek dh

dt at that instant.

(3.) Equation relating variables. The water cross section is a triangle whose base is w(t)
feet and whose height is h(t) feet. The water and trough sections are similar triangles so

w(t)
h(t) = 6

4 so w(t) = 3
2h(t).

The volume of the water is the volume of a triangular cylinder of length ` = 12 feet so

V (t) = A(t)` = 1
2w(t)h(t)` = 1

2 ·
3

2
h(t) · h(t) · 12 = 9h(t)2.

(4.) Differentiate. We find
dV
dt = 18h(t)dhdt .

Solving for the rate of change in height,
dh
dt = 1

18h(t)
dV
dt .

(5.) Substitute known quantities and solve for wanted quantity. At the desired instant,
dh
dt = 1

18·3 · 9 = 1
6 feet per minute.

13. Use differentials to approximate 3
√

63.91.

The number is close to 64 = 43. Writing the differential of the function y = 3
√
x, we have

dy =
1

3
x

−
2
3 dx

Then if x = 64 and dx = ∆x = 63.91− 64 = −.09 then the differential approximation is

y(x+ ∆x)− y(x) = ∆y ≈ dy =
1

3
x

−
2
3 dx.

Substituting values,

3
√

63.91− 4 ≈ 1

3
· 64

−
2
3 · (−.09) = − 1

16
· .03 = −0.001875

Thus
3
√

63.91 ≈ 4− 0.001875 = 3.998125.

14. A tank has the shape of a cylinder with hemispherical ends. If the cylindrical part is 100
centimeters long and has an outside diameter of 20 centimeters, about how much paint
is required to coat the outside of the tank to a thickness of 1 millimeter? (Text problem
147[35].)

We express the volume of the tank (including the tank itself and the space enclosed) V in
cubic centimeters in terms of the radius of the cylindrical part r in centimeters. Then the
volume of paint is ∆V = V (r + ∆r)− V (r) = V (10.1)− V (10), where r = 10 centimeters,
half of the diameter, and ∆r = .1 centimeter (one millimeter). The volume is the sum of
the volumes of the cylinder plus the two hemispherical ends

V (r) = πr2`+
4

3
πr3 = 100πr2 +

4

3
πr3.

Its differential is
dV = 200πr dr + 4πr2 dr.

Then the volume of paint is

∆V ≈ dV = 200π · 10 · 0.1 + 4π102 · 0.1 = 753.9822 cubic centimeters.
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15. Identify the critical points and find the maximum value and the minimum value on the
interval I = [−1, 4].

f(x) =
x3

1 + x4

The function is everywhere differentiable, so the critical points are the endpoints x = −1
or x = 4 or the stationary points. To find these, differentiate and set to zero.

f ′(x) =
3x2(1 + x4)− x3(4x3)

(1 + x4)2
=
x2(3− x4)

(1 + x4)2

This is zero if x = 0 or if x = ± 4
√

3 = ±1.316074. This leaves two stationary points in the
interval, x = 0 or x = 4

√
3. By the Critical Point Theorem, the maximum and minimum

occur at a critical point. Thus we need to compute the values of the function at these four
points and select the smallest and largest.

f(−1) =
(−1)3

1 + (−1)4
= −1

2
, f(0) =

(0)3

1 + (0)4
= 0,

f(
4
√

3) =
( 4
√

3)3

1 + ( 4
√

3)4
= 0.5698768, f(4) =

(4)3

1 + (4)4
=

64

257
= 0.2490272.

Thus the maximum is 0.5698768 which occurs at the stationary point x = 4
√

3 and the

minimum is −.5 which occurs at the left endpoint x = −1.

16. Determine where the given function is increasing, decreasing, concave up, concave down.
Locate the zeros, critical points, horizontal and vertical asymptotes, y-intercepts, extrema,
relative extrema and inflection points. Use th first and second derivative tests to decide if
the which of the stationary points are local minima and maxima. Sketch the graph.

f(x) =
3x+ 1

x2 + 1

From f(0) = 1 we see that the y-intercept is the point E = (0, 1). . Also, the denominator

is bounded away from zero so that there is no vertical asymptote. Also the limit of f(x) as

x→ ±∞ is zero so y = 0 is the horizontal asymptote. Solving f(x) = 0 implies 3x+ 1 =

0 of x = − 1
3 . Thus the only zero point is C =

(
−1

3
, 0

)
. Since the sign is that of the

numerator of f(x), we see that f(x) < 0 on (−∞− 1
3 ) and f(x) > 0 on (− 1

3 ,∞). Finally,
because x2 + 1 ≈ 10

9 when x is near − 1
3 , we have f(x) ≈ 27

10 (x + 1
3 ) near x = − 1

3 so the
graph crosses the zero from negaive to positive with slope 27

10 near x = − 1
3 .

Taking the first derivative gives the next batch of clues.

f ′(x) =
3(x2 + 1)− (3x+ 1) · 2x

(x2 + 1)
2 =

−3x2 − 2x+ 3

(x2 + 1)
2

The denominator is bounded away from zero so the signs are determined by the numerator
−3x2 − 2x + 3 which is a parabola that crosses the y-axis in two points. Solving −3x2 −
2x+ 3 = 0 using the quadratic formula, the two roots ω1 and ω2 give the stationary points

−b±
√
b2 − 4ac

2a
=
−(−2)2±

√
(−2)2 − 4(−3)3

2(−3)
=

2±
√

40

−6
= −1

3
±
√

10

3
≈ −1.387, .721
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Since the function is differentiable on R, there are no singular points and no endpoints. Only

stationary points are the critical points: B = (ω1, f(ω1)) and F = (ω2, f(ω2)). . Since

−3x2 − 2x + 3 is a downward parabola, we find that f ′(x) < 0 on (−∞, ω1), f ′(x) > 0 on

(ω1, ω2) and f ′(x) < 0 on (ω2,∞). Hence the function f(x) is increasing on (ω1, ω2) and

decreasing on (−∞, ω1) ∪ (ω2,∞). Since the function is decreasing to the left and increas-

ing to the right, the first derivative test tells us that

B = (ω1, f(ω1)) ≈ (−1.387,−1.081) is a relative minimum point. Also the function is in-

creasing to the left and decreasing to the right,

F = (ω2, f(ω2)) ≈ (.721, 2.081) is a relative maximum point. Now because over the set

(− 1
3 ,∞) where f(x) is positive it increases until it reaches ω2 and decreases from that point

on, f(ω2) ≈ 2.081 is the gobal maximum. . Similarly because f(x) is negative exactly on

the set (−∞,− 1
3 ) where it decreases until it reaches ω1 and increases until x = − 1

3 ,

f(ω1) ≈ −1.081 is the global minimum. .

The last clues may be deduced from the second derivative

f ′′(x) =
(−6x− 2)

(
x2 + 1

)2 − (−3x2 − 2x+ 3) · 2
(
x2 + 1

)
· 2x

(x2 + 1)
4 =

6x3 + 6x2 − 18x− 2

(x2 + 1)
3

The denominator doesn’t vanish, its signs depend on the numerator c(x) = 6x3 + 6x2 −
18x − 2. Because the cubic changes signs c(−3) = −56, c(−2) = 10, c(0) = −2 and
c(2) = 34 there are three zeros of c(x) (of f ′′(x)), call them α1 ≈ −2.261, α2 ≈ −.108 and
α3 ≈ 1.369. The signs of the second derivative are f ′′(x) < 0 if x ∈ (−∞, α1) ∪ (α2, α3)

and f ′′(x) > 0 if x ∈ (α1, α2) ∪ (α3,∞). Thus f is concave down in (−∞, α1) ∪ (α2, α3).

and concave up in (α1, α2) ∪ (α3,∞). Observe that at the stationary points f ′′(ω1) > 0

and f ′′(ω2) < 0. Thus by the second derivative test we confirm that f(ω1) is a local
minimum and f(ω2) is a local maximum. Finally, since the signs of f ′′(x) change at the

αi’s, A = (α1, f(α1)) ≈ (−2.261,−.946), D = (α2, f(α2)) ≈ (−.108, .668) and

G = (α3, f(α3)) ≈ (1.369, 1.777) are inflection points.
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17. Find, if possible, the (global) maximum and minimum values of f(x) = 3
√
x − 2x on the

interval [0, 4].

The function is continuous on a closed bounded interval, thus has a global minimum and a
global maximum. Let us find the critical points. The derivative is

f ′(x) =
3

2
√
x
− 2,

which is defined on (0, 4], and not defined at x = 0, thus f is singular at x = 0. f ′(x) = 0
implies 3 = 4

√
x which vanishes only ast the stationary point x = 9

16 . The endpoints are
x = 0 and x = 4. Thus the set of critical points is {0, 9

16 , 4}. By the Critical Point Theorem,
the maxima and minima may be selected from

f(0) = 0, f

(
9

16

)
=

9

8
, f(4) = −2.

thus the global maximum is f

(
9

16

)
=

9

8
and the global minimum is f(4) = −2 .

18. Consider f(x) = Ax3 + Bx2 + Cx + D with A > 0. Show that f has one local minimum
and one local maximum if and only if B3 − 3AC > 0.

A cubic function is smooth on R, so has relative extrema only at stationary points. Thus
we seek conditions that guarantee that f has exactly two stationary points. The fact that
the stationary points are one local minimum and one local maximum will follow from the
cubic nature.

Let us assume that B3 − 3AC > 0 to show that f has one local minimum and one local
maximum. Since f is cubic, it is differentiable everywhere so the only critical points are
stationary points. The derivative is

f ′(x) = 3Ax2 + 2Bx+ C = ax2 + bx+ c.

Since A > 0, the only roots ω1 < ω2 of f ′ are given by the quadratic formula

ω1, ω2 =
−b±

√
b2 − 4ac

2a
=
−2B ±

√
4B2 − 12AC

6A
.

Because we assume 4B2 − 12AC = 4(B2 − 3AC) > 0, it shows that f has two distinct sta-
tionary points at x = ω1 and x = ω2. Furthermore, since roots of a polynomial correspond
to factors, f ′(x) = 3A(x − ω1)(x − ω2). It follows that f ′(x) > 0 if x < ω1 or x > ω2 and
f ′(x) < 0 if ω1 < x < ω2. This says that f ′ > 0 to the left of ω1 and f ′ < 0 to the right, so
f(ω1) is a local maximum by the First Derivative Test for local maxima. Similarly, f ′ < 0
to the left of ω2 and f ′ > 0 to the right, so f(ω2) is a local minimum. Since these are the
only critical points, we have shown that f has exactly one local minimum and exactly one
local maximum.

Let us now assume that f has one local minimum and one local maximum to show B3 −
3AC > 0. Since f is cubic, it is everywhere differentiable so has no singular points and
no endpoints. The critical points must be stationary points which are the roots of f ′(x) =
3Ax2 + 2Bx + C. Since its zeros are given by the quadratic formula above, that there are
two roots says that the discriminant is positive, or 4B2 − 12AC = 4(B2 − 3AC) > 0, as
desired.
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19. A farmer has 70 feet of fence which he plans to enclose a rectangular pen along one side of
his 100 foot barn, as shown in the figure (the side along the barn needs no fence). What are
the dimensions of the pen with maximum area?

(1.) Diagram and variables. Let x be the length of two sides the fence and y the length
parallel to the barn wall in feet. (2.) Objective function. We wish to maximize A = xy.
(3.) Use the conditions to express the objective in terms of one variable. We are given the
total length 2x+ y = 70. Solving for y in terms of x

y = 70− 2x.

Substituting into the objective function

A(x) = xy = x(70− 2x)

(4.) Critical points. We wish to find the maximum of A on the interval of feasible fence
lengths x ∈ [0, 35]. Differentiating, we find

dA

dx
= 70− 4x.

The derivative vanishes at the stationary point x = 35
2 . Being quadratic, the function is

differentiable everywhere, thus the set of critical x’s is {0, 17.5, 35}. (5.) Determine the
maximum. The corresponding areas are A(0) = A(35) = 0 and A(17.5) = 17.5 · 35 = 612.5

square feet. Thus the maximal area is 612.5 square feet which occurs when dimensions

are x = 17.5 feet and y = 35 feet.

20. The ZootUte company makes suits. The fixed monthly cost is $7000 while the cost of man-
ufaturing each unit is $100. Write an expression for the cost C(x), the total cost of making
x suits in a month. ZootUte estimates that 100 units a month can be sold at a unit price
of $250 and that the sales will increase by 10 units for each $5 decrease in price. Write
an expression for the prince p(x) and the revenue R(x) if x units are sold in one month,
x ≥ 100. Write an expression for the profit P (x) if x ≥ 100. Sketch the graph of P (x).
From it estimate x where profit is maximum. Find the exact value using calculus. (Text
problem 177[54–57].)

The cost is the sum of the fixed costs and variable costs

C(x) = 7000 + 100x.

The unit price that can be charged for x ≥ 100 will decrease $5 for each additional 10 units
made or 5

10 dollars per unit resulting in demand in dollars per month

p(x) = 250− 1

2
(x− 100) = 300− 1

2
x for x ≥ 100.
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The revenue is number sold times price per unit, or

R(x) = x

(
300− 1

2
x

)
= 300x− 1

2
x2 for x ≥ 100.

The profit is revenue minus cost,

P (x) = R(x) = C(x) = 300x−1

2
x2−(7000+100x) = −1

2
x2 + 200x− 7000 for x ≥ 100.

Plotting the parabolic P (x),

where vertical y-axis is in hundreds of dollars and x-axis units sold. The profit is maximum

at about P = 13000 dollars at x = 200. Taking derivative

dP

dx
= −x+ 200

which is zero exactly at x = 200. Since P (x) is increasing for x < 200 and decreasing for
x > 200, the stationary point is a global maximum. The exact value of the maximum is
P (200) = 13000 dollars.

13



21. A humidifier uses a rotating disk of radius r, which is partially submerged in water. The
most evaporation occurs when the exposed wetted region (shown as the shaded region) is
maximized. Find the height of the water relative to the center, h that maximizes the wetted
region. (Text problem 176[40].)

(1.) Diagram and variables. Let h be the signed height of the water relative to the center
of the disk in the same units as r. Let A be the area of the wetted region and W the
area of the water in square units. Let θ denote half the angle of the water from the center.
(2.) Objective function. If h < 0 (water level below the center of the disk) then the wetted
region is outside the disk of radius −h and above the water. The area of the water is the
area of a sector of angle 2θ which is a θ

π part of the whole circle minus the area of the
triangle from the corners of the water to the center. Thus for −r ≤ h < 0,

W = πr2 · θ
π
− 2 · 1

2
(−h)r sin θ = θr2 + hr sin θ.

Thus the wetted area (the objective function) is

A = πr2 − π(−h)2 −W = πr2 − πh2 − θr2 − hr sin θ.

(3.) Use the conditions to express the objective in terms of one variable. Using the triangle
from water to center

−h = r cos θ

The objective may be expressed in terms of θ ∈
[
0, π2

)
by

A = πr2 − πr2 cos2 θ − θr2 + r2 cos θ sin θ

For h ≥ 0 the center of the wheel is in the water and the exposed area is just the part of
the disk above the water, namely

A = (π − θ)r2 − 2 · 1

2
hr sin θ

Substituting −h = r cos θ, for π
2 ≤ θ ≤ π,

A = (π − θ)r2 + r2 cos θ sin θ.

Putting these together, for 0 ≤ θ ≤ π,

A(θ) =

{
πr2 − πr2 cos2 θ − θr2 + r2 cos θ sin θ, if θ < π

2 ;

(π − θ)r2 + r2 cos θ sin θ, if π
2 ≤ θ.
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(4.) Critical points. Note that A(θ) is continuous. The derivative is

dA

dθ
=

{
2πr2 cos θ sin θ − r2 + r2

(
− sin2 θ + cos2 θ

)
, if θ < π

2 ;

−r2 + r2
(
− sin2 θ + cos2 θ

)
, if π

2 ≤ θ.

thus A is differentiable because the two definitions have the same slope at θ = π
2 . Replacing

with double angle formulas

dA

dθ
=

{
πr2 sin 2θ − r2 + r2 cos 2θ, if θ < π

2 ;

−r2 + r2 cos 2θ, if π
2 ≤ θ.

(5.) Determine the maximum. We notice that dA
dθ < 0 for π

2 ≤ θ < π and dA
dθ (π) = 0 so

θ = π is the only stationary point there, which is also the endpoint. Also dA
dθ (0) = 0 so the

other endpoint is also stationary. Looking at 0 < x < π
2 we equate the derivative to zero

2πr2 cos θ sin θ − r2 + r2
(
− sin2 θ + cos2 θ

)
= 0

or
2πr2 cos θ sin θ − r2

(
sin2 θ + [1− cos2 θ]

)
= 0.

Hence
0 = 2πr2 cos θ sin θ − 2r2 sin2 θ = 2r2 (π cos θ − sin θ) sin θ

so either sin θ = 0 corresponding to θ = 0 in the interval or 0 < θ < π
2 and

π =
sin θ

cos θ
= tan θ

which happens at θ0 = tan−1 π = 1.263. The critical points occur for θ equal to 0, tan−1 π
or π. At the critical points, A(0) = 0, A(θ0) = 1.879 and A(π) = 0. Thus the maximum
occurs at θ0 where A = 1.879. We observe that if tan(θ0) = π then sec2 θ0 = 1 + π2 so

cos θ0 =
1√

1 + π2

It follows that the optimal distance below the center is

−h = r cos θ0 =
r√

1 + π2
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