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Abstract

We find explicit formulas for the modulus of compression for all postbuckled elastic tube geometries using
Levy’s solution for closed thin elastic rings under pressure. The equivalent geometric problem is to to
determine the rate of deformation of a plane curve of given length, enclosing a given area and minimizing
bending energy due to a change in area. The variational problem is solved. The solution is compared to
the minimizer from a simple restricted class of curves consisting of four arcs of circles.

We are interested in the geometric deformation of a carbon nanotube under hydrostatic pressure. This
problem arises in the design of a nanotube electromechanical pressure sensor [28]. Single walled carbon
nanotubes were first created in the laboratory over a decade ago [14, 15]. Modeled as elastic tubes, hydro-
static pressure forces the volume reduction of a nanotube. Its walls keep a fixed cross section length, have
area depending on pressure, but resist by minimizing bending energy. The electrical response to a large
deformation is a metal to semiconductor transition and the resulting decrease in conductance. Since the
amount of deformation for different pressures depends on size, by devising an array of nanotubes of various
sizes, any conductance response can be engineered into the sensor. It is therefore of interest to determine
the modulus of deformation due to pressure.

The problem of minimizing the bending energy for plane curves with fixed endpoints and given length was
proposed by J. & D. Bernoulli and studied by Euler, thus energy minimizing curves are called Euler elastica.
This problem spurred the development of the calculus of variations and the theory of elliptic functions [26].
The solution for thin rings deforming under hydrostatic pressure was found by M. Levy [21]. The buckling
of a circular ring under hydrostatic pressure has been studied by Carrier [5], Chaskalovic and Naili [6] who
determine bifurcation points, as well as many others, e.g., [2, 3, 16, 17, 23, 24, 25]. It is now a standard
example in mechanics texts, e.g. [7, Pages 274–281] and geometry texts, e.g. [22] which gives an elementary
discussion of elastica with given turning angle. Similar models describe the shape of red blood cells [4, 8, 9].
Elastica in three space and other spaceforms [18, 19], as well as dynamical deformations [20] have been
studied. Another problem equivalent to minimizing sup |K| for fixed A and L is discussed in [13].

We formulate the variational problem. Let s denote arclength along a curve Γ. The position vector is
then X(s) = (x(s), y(s)). Since we are parameterizing by arclength, the unit tangent vector is given by

T (s) = (x′(s), y′(s)) = (cos θ(s), sin θ(s)), (1)

where θ(s) is the angle T makes with the positive x-axis and prime denotes differentiation with respect to
arclength. The position may be recovered by integrating

X(s) = X0 +
∫ s

0

(cos θ(σ), sin θ(σ)) dσ.



We’ll take X0 = (0, 0). The curvature of the curve is given by

K = θ′(s).

The cross section of the tube is to be regarded as an inextensible elastic rod in the plane which is subject
to a constant normal hydrostatic pressure P along its outer boundary. The section is assumed to have a
uniform wall thickness h0 and elastic properties. The centerline of the wall is given by a smooth embedded
closed curve in the plane Γ ⊂ R2 which bounds a compact region Ω whose boundary has given length L0

and which encloses a given area Area(Ω). Among such curves we seek one, Γ0, that minimizes the energy

E(Γ) =
B
2

∫
Γ

(K −K0)2 ds+ P (Area(Ω)−A0) ,

where B = Eh3
0/{12(1 − ν2)} is the flexural rigidity modulus of the section, E is Young’s modulus, ν is

Poisson’s ratio, K denotes the curvature of the curve and K0 is the undeformed curvature (= 2π/L0 for the
circle.)

This is equivalent to the problem of minimizing

E(Γ) =
∫

Γ

K2 ds, (2)

among curves of fixed length L0 that enclose a fixed area A0 = Area(Ω). We are interested in the relation
between the geometry of the minimizer and the values of A0 and L0. The problem is invariant under a
homothetic scaling of Γ0. Thus if the curve is scaled to Γ̃0 = cΓ0, its area, length and energy change by
Ã0 = c2A0, L̃0 = cL0 and Ẽ = c−1E for c > 0. Since the shape of the minimizer is independent of the scaled
data, it suffices to find the relation between the Isoperimetric Ratio, I, and other dimensionless measures of
the shape of Γ0. The isoperimetric ratio

I =
4πA
L2

satisfies 0 < I ≤ 1 by the isoperimetric inequality, which says that the area of any figure with fixed boundary
length does not exceed the area of a circle with that boundary length. Moreover, the only figure with I = 1
is the circle.

Assuming that the minimizing curve has reflection symmetry in both the x and y-directions, which is
the principal mode (n = 2) of buckling, we only need to find θ for 0 ≤ s ≤ L where 4L = L0, over a quarter
of the curve, and then reflect to get the closed curve. We are assuming that Γ is a closed C1 curve. By
rotation and translation, we assume x(0) = y(0) = 0 = x(L0) = y(L0). In order for the curve not to have
a corner at the endpoints, it is necessary that θ(0) = 0 and θ(L0) = 2π. It is also assumed, that for θ(s),
the minimizer, the resulting curve γ = X([0, L]) remains an embedded curve. Let γ̂ denote the closed curve
γ followed by the line segment from X(L) to (0, y(L)) followed by the line segment back to (0, 0). Then by
Green’s theorem, the area is bounded by Γ is given by

1
4

Area(Γ) =
1
4

∫
Γ

x dy =
∮
γ̂

x dy =
∫
γ

x dy, (3)

because dy = 0 on the horizontal segment and x = 0 on the vertical segment. The variational problem is to
find a function θ : [0, L] → R such that θ(0) = 0, θ(L) = π/2 satisfying Area(θ) = A0 which minimizes (2).
In fact, since it takes energy to squeeze the curve, it suffices to find an energy minimizer among such curves
that satisfy Area(θ) ≤ A0.
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Figure 1: Quarter Peanut Domains.

1. Warmup: Peanut Example.

Let us illustrate the computation of the modulus of deformation in a family of curves, the peanuts. These
curves arise when trying to minimize the sup-norm of curvature instead of the bending energy (the L2 norm
of the curvature). [13].

The domains have reflection symmetry on their x and y-axes. Each quarter of the domain remains in
a coordinate quadrant and consists of two arcs. The arc in the first quadrant starts perpendicular to the
x-axis and has curvature k1 > 0 for a length `1 > 0 followed by a second arc tangent to the first whose
curvature is k2, which is allowed to be negative, of length `2 > 0. The end or the second arc is on the y-axis
and perpendicular to it. Thus the length and total curvature of the arc in the first quadrant is

`1 + `2 = = L,

k1`1 + k2`2 =
π

4
.

If the second curvature is negative then the total figure is peanut shaped. The total angle along each arc
is given by θi = ki `i. We shall suppose that 0 < θ1 < π and that the entire arc remains in the first
quadrant. The radii of curvature are thus ri = 1/ki. It is convenient to introduce the coordinates ξ = 2θ2

and r = r1 > 0. The area of the figure in the first quadrant may be computed as follows. There are four
cases, which have to be analyzed slightly differently, namely when 0 < k1 < k2, when 0 < k2 < k1, when
k2 = 0 and when k2 < 0 < k1. For example, in the second case (Fig. 1a), the area is the sum of the areas of
sectors of angles θ1 > 0 and radius r1 and angle θ2 with radius r2 minus the triangle of the second sector in
the fourth quadrant. The hypotenuse has length r2 − r1. Solving in terms of (r, ξ) we get

θ1 =
π − ξ

2

θ2 =
ξ

2

`1 = θ1r1 =
(π − ξ)r

2

`2 = θ2r2 = L− `1 =
2L− (π − ξ)r

2
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r2 =
L− θ1r1

θ2
=

2L− (π − ξ)r
ξ

=
2
(
L− π

2 r
)

ξ
+ r

Hence the area in the peanut is

1
4

Area(Γ) =
1
2
θ1r

2
1 +

1
2
θ2r

2
2 −

1
2

(r1 − r2)2 cos θ2 sin θ2

= Lr − π

4
r2 +

(
L− π

2
r
)2

f(ξ)

where
f(ξ) =

ξ − sin ξ
ξ2

.

This is the expression in the first and fourth cases as well. Note that the function f(ξ) is an odd bounded
function which is increasing on −π ≤ ξ ≤ π. In the third case, the area is the sum of the quarter circle plus
the rectangle so

1
4

Area(Γ) =
π

4
r2
1 + `2r1 = Lr − π

4
r2

In fact, one can check that when k2 → 0 then in all cases the former expression converges to the latter. Also,
if ξ ≥ 0 then as r → 0 the area converges to the area of the football shaped domain with its pointed ends on
the x-axis, 4L2f(ξ).

We may equally easily write the bending energy in these parameters

1
4

E(γ) = `1k
2
1 + `2k

2
2 =

θ1

r1
+
θ2

r2

=
π − ξ

2r
+

ξ2

4L− 2(π − ξ)r

The Lagrange functional is

L =
B
2

E(Γ)− P (A0 −Area(Γ))

2π
B
L =

2π(π − ξ)
r

+
2πξ2

2L− (π − ξ)r
+ λ

{
D2 −

(
L− π

2
r
)2

(1− πf(ξ))
}

Where A0 = 4A, λ = 8P/B is the normalized pressure and D2 = L2 − πA is the isoperimetric difference for
the quarter figure. D ≥ 0 and D = 0 if and only if the peanut is a circle by the isoperimetric inequality.

For given A and L, we wish to find the E-minimizing configuration r, ξ. We formulate the problem
using the Lagrange multiplier λ whose value is normalized pressure. Equivalently, we fix the pressure λ and
determine the configuration that minimizes the energy of deformation L. We are interested in the modulus
of deformation area due to pressure, or the quantity

M =
∂P

∂ log Area(Γ)
=
B
8

∂λ

∂
(
log Area

4

) .
The constrained maximization problem satisfies the Euler-Lagrange equations.

0 =
1
B
∂L
∂r

= −π − ξ
r2

+
ξ2 (π − ξ)

(2L− (π − ξ)r)2
+
λ

2

(
L− π

2
r
)

[1− πf(ξ)]

0 =
1
B
∂L
∂ξ

= −1
r

+
ξ(4L− 2πr + ξr)
(2L− (π − ξ)r)2

+
λ

2

(
L− π

2
r
)2

f ′(ξ)

0 =
2π
B
∂L
∂λ

= D2 −
(
L− π

2
r
)2

(1− πf(ξ))
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Figure 2: Deformation of optimal quarter peanuts of length π
2 .
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Figure 3: Pressure λ vs area A for peanuts.

The system simplifies to

0 =
πr − 2L− 2ξr

(2L− (π − ξ)r)2
+

1
4
λr2 1− πf(ξ)

π − ξ
(4)

0 = − 2
(2L− (π − ξ)r)2

+
1
4
λr f ′(ξ) (5)

0 = D2 −
(
L− π

2
r
)2

(1− πf(ξ)) (6)

The system may be solved as follows. Geometrically, the variables must satisfy 0 < θ1 < π so that |ξ| < π.
But this implies that π|f(ξ)| < 1. Moreover, the isoperimetric inequality says L2 − πA > 0 unless the curve
is a circle and equality holds, which we rule out. (Remember that A and L are the area and boundary length
of the quarter peanut.) The last equation yields(

L− π

2
r
)2

=
D2

1− πf(ξ)
(7)

which is always positive. Thus, when θ2 = ξ/2 < 0 the peanut is not convex. When θ1 = π/2, the second
arc is a straight line and the boundary includes the quarter circle of radius r so that πr < 2L. In fact, in
this case the area is the sum of the quarter circle plus the box A = π

4 r
2 + r(L− π

2 r) as it should be. As r(ξ)
depends continuously on ξ and that the quantity (7.) is strictly positive for all ξ, then r is a continuation of
r(0) and so the negative root is required for all ξ. It follows that

r =
2
π

{
L− D√

1− πf(ξ)

}
.
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Furthermore, this gives a condition for ξ given area and length. Indeed, since r > 0 we must have

f(ξ) <
A

L2
=
I
π
,

an inequality which implies ξ < ξ0(I) < π, where ξ0 is a constant depending on the isoperimetric ratio. λ is
eliminated from the first two Euler-Lagrange equations. By substiting r(ξ) into the resulting equation gives
a single equation for ξ. This equation is solved numerically and the corresponding solutions are drawn with
sector lines, Fig. 2, using MAPLE. In our plots, we assume L = π/2. We also plot the area vs. λ (pressure)
curve in Fig. 3.

Now let’s compute the modulus. The Euler Lagrange equations can be thought of as giving a mapping
F : (λ, ρ, ξ; a) 7→ R3. Writing x = (ρ, ξ, λ), for each A, the parameters are determined by solving the
equation F (x;A) = 0. The derivative ∂xi

∂A may be computed using the chain rule. Differentiating by A, for
each j = 1, 2, 3,

3∑
i=1

∂Fj
∂xi

dxi
dA

+
∂Fj
∂A

= 0

Hence for each k = 1, 2, 3, the derivative may be found using the inverse of the Jacobean matrix

dxk
dA

= −
3∑
j=1

[(
∂Fj
∂xi

)−1
]
kj

∂Fj
∂A

= 0

Computing, we find

(
∂Fj
∂xi

)
=


A B

r2(1−πf(ξ))
4(π−ξ)

C D
r f ′(ξ)

4

π(L− π
2 r)[1− πf(ξ)] π(L− π

2 r)
2f ′(ξ) 0


where

A =
−2πL+ π2r − 3πrξ + 2rξ2

(2L− (π − ξ)r)3
+

1
2
λr

1− πf(ξ)
π − ξ

,

B =
2r2ξ

(2L− (π − ξ)r)3
+

1
4
λr2

[
1− πf(ξ)
(π − ξ)2

− πf ′(ξ)
π − ξ

]
C =

−4(π − ξ)
(2L− (π − ξ)r)3

+
1
4
λ f ′(ξ)

D =
4r

(2L− (π − ξ)r)3
+

1
4
λr f ′′(ξ)

Similarly, ∂F∂A = (0, 0,−π)T . Thus, using Cramer’s rule,

dλ

dA
=

1

det
(
∂Fj

∂xi

)
∣∣∣∣∣∣

A B 0
C D 0

π(L− π
2 r)[1− πf(ξ)] π(L− π

2 r)
2f ′(ξ) π

∣∣∣∣∣∣
=

4(AD−BC)(π − ξ)(
L− π

2 r
){ −Ar

(
L− π

2 r
)

(π − ξ)(f ′)2 + Br(1− πf)(π − ξ)f ′
+Cr2(1− πf)

(
L− π

2 r
)
f ′ − Dr2(1− πf)2

}
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Figure 4: Modulus dλ/d lnA vs. λ for extremal peanuts.

The result of the MAPLE computation of dλ/d ln A is plotted in Fig. 4.
We can compute the limiting pressure and modulus at the circle from these formulas. First, as the

isoperimetric difference D → 0, we see from (6) that either r → 2L/π or ξ → π. Assuming that ξ does not
limit to π, after eliminating λ in (5) and (6) we find[

L− π

2
r + ξr

]
f ′(ξ) =

[1− πf(ξ)]r
π − ξ

(8)

so that in the limit,

ξ f ′(ξ) =
1− πf(ξ)
π − ξ

which has a unique solution ξ = π/2 in (−π, π). Taking the limit and solving (4) we get that the pressure
to deform the peanut at the circle is

P =
B
8
λ =

πB
(4− π)r3

≈ 3.659792369
B
r3

so λ→ 8π(4−π)−1r−3 ≈ 29.27833894 r−3 which says that the peanuts are harder to buckle than the elastica.
To compute the modulus at the circle, let us compute dλ/d lnA for the circle or radius one. Then the

modulus at the circle of radius r0 is given by M = 1
8Br

−3
0 dλ/d lnA. Let us expand the quantities near the

circle in terms of
ε = L− π

2
r.

First, r = 1 − 2ε/π holds exactly. Thus we may find the second order expansion of ξ near zero using
equation (8)

ξ ≈ π

2
− 2(4− π)ε

π2 − 8
− 8(4− π)2ε2

π(π2 − 8)2
+ . . .

Substituting this into equation (5), we obtain the expansion of λ near ε = 0,

λ ≈ λ0 + λ1ε+ λ2ε
2 + . . . =

8π
4− π

+
64(π2 + 2π − 16)ε2

(4− π)π(π2 − 8)
+ . . .
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Also, using equation (6) we find the expansion of the area near ε = 0,

A ≈ a0 + a1ε+ a2ε
2 + . . . =

π

4
− (4− π)ε2

π2
+ . . .

Thus, using L’Hospitals’s rule, the modulus at the circle is

A
dλ

dA
=
πλ2

4a2
= −16π(π2 + 2π − 16)

(4− π)2(π2 − 8)
≈ −17.51367398.

Finally, we remark that the family of peanuts stays embedded for ξ > ξ0 where the critical −π < ξ0 < 0.
The pinching is at the origin when (r+ |r2|) cos ξ0/2 = |r2| or in other words, r2 = −r cos(ξ0/2)/(1−cos ξ/2).
Using ξr2 = 2L− (π− ξ)r in equation (8), we solve to find ξ0 ≈ −1.387393003 where r ≈ 0.09103308488 and
I = 0.09989963316. On the other hand, the convexity changes from negative to positive at ξc = 0. Then (8)
implies rc = π2/(12 + π2) ≈ 0.4512932289, when I ≈ .2627521721.

2. Euler Lagrange Equation for the energy minimizing curve.

Since we are looking to minimize E subject to Area(θ) ≤ A0/4 = A, the Lagrange Multiplier λ = 8P/B ≥ 0
is nothing more than scaled pressure such that at the minimum, the variations satisfy 4 δE = −λ δArea. The
corresponding Lagrange Functional is thus

L[γ] = 4
∫
γ

K(s)2 ds− λ
{
A−

∫
γ

x dy

}
= 4

∫ L

0

θ̇(s)2 ds− λ

{
A−

∫ L

0

∫ s

0

cos θ(σ) dσ sin θ(s) ds

}
.

Assuming that the minimizer is the function θ(s) with θ(0) = 0 and θ(L) = 2/π, we make a variation
θ + εv where v ∈ C1([0, L]) with v(0) = v(L) = 0. Then

0 = δL =
d

dε

∣∣∣∣
ε=0

L =

= 8

L∫
0

θ̇v̇ ds− λ
L∫

0


s∫

0

v(σ) sin θ(σ) dσ sin θ(s)−
s∫

0

cos θ(σ) dσ cos θ(s)v(s)

 ds

Integrating by parts, and reversing the order of integration in the second integral, δL =

−8

L∫
0

θ̈v ds− λ


L∫

0

L∫
σ

sin θ(s) ds v(σ) sin θ(σ) dσ −
L∫

0

s∫
0

cos θ(σ) dσ cos θ(s)v(s) ds

 .

Switching names of the integration variables in the second term yields

δL =

L∫
0

−8θ̈(s)− λ


L∫
s

sin θ(σ) dσ sin θ(s)−
s∫

0

cos θ(σ) dσ cos θ(s)


 v(s) ds.

Since v ∈ C1
0 ([0, L]) was arbitrary, the minimizer satisfies the integro-differential equation

θ̈(s) = −λ
8

{∫ L

s

sin θ(σ) dσ sin θ(s)−
∫ s

0

cos θ(σ) dσ cos θ(s)

}
(9)
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Thus if λ = 0 we must have θ(s) = πs
2L and γ is a circle of radius L/π. Thus if I < 1 then λ > 0. To see

the differential equation implied by (9), we assume that θ̇ 6= 0 and differentiate

θ′′′ =
λ

8
{sin θ(s) sin θ(s) + cos θ(s) cos θ(s)}

−λ
8

{∫ L

s

sin θ(σ) dσ cos θ(s) +
∫ s

0

cos θ(σ) dσ sin θ(s)

}
θ′(s)

=
λ

8
− λ

8

{∫ L

s

sin θ(σ) dσ cos θ(s) +
∫ s

0

cos θ(σ) dσ sin θ(s)

}
θ′(s) (10)

θ′′′′ =
λ

8
{sin θ(s) cos θ(s)− cos θ(s) sin θ(s)} θ′(s) +

+
λ

8

{∫ L

s

sin θ(σ) dσ sin θ(s)−
∫ s

0

cos θ(σ) dσ cos θ(s)

}
(θ′(s))2

−λ
8

{∫ L

s

sin θ(σ) dσ cos θ(s) +
∫ s

0

cos θ(σ) dσ sin θ(s)

}
θ′′(s) (11)

from which we get

θ′′′′θ′ = −θ′′ (θ′)3 +
[
θ′′′ − λ

8

]
θ′′(s). (12)

This differential equation may be integrated as follows:

θ′′′′θ′ − θ′′′θ′′

(θ′)2
=
[
θ′′′

θ′

]′
= −θ′θ′′ − λθ′′

8(θ′)2
=
[
−1

2
(θ′)2 +

λ

8θ′

]′
so there is a constant c1 so that

θ′′′ = c1θ
′ − 1

2
(θ′)3 +

λ

8
. (13)

In other words, the curvature K = θ′ satisfies

K ′′ = c1K +
λ

8
− 1

2
K3. (14)

Multiplying by K ′ and integrating, we find a first integral. For some constant H,

(K ′)2 = c1K
2 +H +

λK −K4

4
= F (K). (15)

The Euler-Lagrange equations have the following immediate consequence. The area is given using (10)
and (13),

A =
1
2

∫
γ

x dy − (y − y(L)) dx

=
1
2

∫ L

0

{
sin θ(s)

∫ s

0

cos(θσ) dσ − cos θ(s)
∫ L

s

sin θ(σ) dσ

}
ds

=
4
λ

∫ L

0

{
λ
8 − θ

′′′

θ′

}
ds

=
2
λ

∫ L

0

K2 ds− 4c1L
λ

. (16)
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3. Solution of Euler Lagrange Equation.

Since the curve closes, the curvature is a L0-periodic function which satisfies (14), the nonlinear spring
equation [11]. As we expect that the curvature to continue analytically beyond the endpoints of the quarter
curve, and as we assume that the curve have reflection symmetries at the endpoints, the curvature would
continue as an even function at the endpints. In particular, the boundary conditions on θ imply K ′(0) =
K ′(L) = 0 from (9). As we have differentiated (9) twice, the solutions of (14) have two extra constants of
integration which have to be satisfied by virtue of being solutions of (9). Furthermore, expecting buckling to
occur in the n = 2 mode, the optimal curves will be elliptical or peanut shaped, the endpoints of the quarter
curves will be the minima and maxima of the curvature around the curve, and these to be the only critical
points of curvature. Since the minimum K may be negative, as in peanut shaped regions, the embeddedness
of the reflection is more likely to be satisfied if K(0) = K1 is the maximum of the curvature and K(L) = K2

is the minimum of curvature around the curve.
One degree of freedom in the problem is homothety, which will be irrelevant to deducing nondimensional

measures, as we’ve already remarked. Indeed, if the curve is scaled X̃ = cX then K̃ = c−1K, dK̃/ds̃ = c−2K ′,
c̃1 = c−2c1, H̃ = c−4H and λ̃ = c−3λ. For convenience, as λ > 0 for noncircular regions, we set λ = 1 to fix
the scaling.

As K and K ′ vary, they satisfy (15), thus the parameters c1, H, λ must allow solvability of (15). Moreover,
0 = F (K1) = F (K2) and the points (K1, 0) and (K2, 0) must be in the same component of the solution curve
of (15) in phase (K,K ′) space. Thus, given K1,K2 we can solve for c1 and H,

c1 =
1
4

(
K2

1 +K2
2 −

λ

K1 +K2

)
, (17)

H = −K1K2

4

(
K1K2 +

λ

K1 +K2

)
, (18)

provided K2 6= −K1. A solution would have a minimum and maximum curvature with appropriate c1 and
H so we assume the solvability condition. Then 4F (K) = Q1(K)Q2(K) can be factored into quadratic
polynomials, where

Q1 = (K1 −K)(K −K2);

Q2 = K2 + (K1 +K2)K +K1K2 +
λ

K1 +K2

Since we’ve assumed that F (K) is positive in the interval K2 < K < K1, this forces other inequalities
among the c1, H and λ. For example, if K2 = 0, then H = 0 and Q2 > 0 near K = 0 only if λ = 1, which
we assume to be true. For K2 < 0, then Q2 > 0 near K = 0 for some K1 only if K1 + K2 > 0, which we
also assume.

Since the possible homotheties and translations of the same solution (shifts like K(s + c)) have been
eliminated, the remaining indeterminacy coming from the constants of integration is to ensure that the
direction angle Θ changes by exactly π/2 over γ. Thus given K2, we solve for K1 so that

Θ(L) =
π

2
(19)

where

Θ(L) =

L0∫
0

K(s) ds =

K1∫
K2

K dK√
F (K)

.
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We have used equation (15) to change variables from s to K(s). In fact, this integral can be reduced to a
complete elliptic integral. Similarly

L =

L0∫
0

ds =

K1∫
K2

dK√
F (K)

(20)

is a complete elliptic integral. In order to tabulate and graph closed solutions of (14), we choose K2, then
find c1 and H using (17,18). Then find K1 so that (19) holds. Then compute L using (20) and integrate
(2,1,3,14) numerically on 0 ≤ s ≤ L. K1 is found using a simple root finder to solve (19).

We may also express the quarter area in this way. (16) becomes

A =
2
λ

∫ L

0

K2 ds− 4c1L
λ

=
2
λ

K1∫
K2

K2 dK√
F (K)

− 4c1L
λ

(21)

4. Reduction to Elliptic Integrals.

We now describe the reduction of (19,20) to complete elliptic integrals, following the procedure [1], [12].
Choose a constant µ so thatQ2−µQ1 is a perfect square. This happens upon the vanishing of the discriminant

∆ = D2(µ+ 1)2 − 4S2µ− 4(µ+ 1)
λ

S
(22)

where S = K1 +K2, D = K1 −K2 and P = K1K2. It is zero when µ equals one of

µ1, µ2 =
S3 + 4PS + 2λ± 2

√
(λ+ 2K1S2)(λ+ 2K2S2)
SD2

. (23)

where, say, µ1 > µ2. The factors are

(1 + µ1)K2 + (1− µ1)SK + (1 + µ1)P +
λ

S
= Q2 − µ1Q1 = F 2

1 = (αK − β)2 (24)

(1 + µ2)K2 + (1− µ2)SK + (1 + µ2)P +
λ

S
= Q2 − µ2Q1 = F 2

2 = (ηK + δ)2. (25)

The signs were chosen based on numerical values. It follows that

α =
√

1 + µ1 (26)

β =

√
(1 + µ1)P +

λ

S
(27)

η =
√

1 + µ2 (28)

δ =

√
(1 + µ2)P +

λ

S
, (29)

which turn out to be positive. These variables satisfy a relation verified in section 5.

0 = αβ
(
2− η2

)
+ δη

(
2− α2

)
(30)

We can now solve for the factors as sums of squares.

Q1 =
F 2

1 − F 2
2

µ2 − µ1

Q2 =
µ2F

2
1 − µ1F

2
2

µ2 − µ1

12



The idea is to change variables in the integral according to

T =
F1

F2
=
αK − β
ηK + δ

, K =
β + δT

α− ηT
,

dT

dK
=

αδ + βη

(ηK + δ)2
.

The function T is increasing. Since Q1(K1) = Q1(K2) = 0 it follows that T = 1 when K = K1 and T = −1
when K = K2. Moreover,

Q1Q2 =
(F 2

1 − F 2
2 )(µ2F

2
1 − µ1F

2
2 )

(µ2 − µ1)2
=

(T 2 − 1)(µ2T
2 − µ1)F 4

2

(µ2 − µ1)2

Therefore, the integral (20) becomes

L =
2(µ1 − µ2)

(αδ + βη)
√
µ1

1∫
−1

dT√
(1− T 2)(1− µ2

µ1
T 2)

=
4(µ1 − µ2)

(αδ + βη)
√
µ1
K(m) (31)

where m =
√
µ2/µ1 is imaginary and

K(m) =
∫ 1

0

dT√
(1− T 2)(1−m2T 2)

is the complete elliptic integral of the first kind.
To find Θ(L) we express K by partial fractions

K =
β + δT

α− ηT
=

(αδ + βη)T
α2 − η2T 2

+
δ
η + β

α

1− η2

α2T 2
− δ

η

Because the first term is odd, we get

Θ =
2(µ1 − µ2)

(αδ + βη)
√
µ1

1∫
−1

K dT√
(1− T 2)(1−m2T 2)

=
4(µ1 − µ2)
αη
√
µ1

Π
(
η2

α2
,m

)
− δ

η
L (32)

where

Π(n,m) =
∫ 1

0

dT

(1− nT 2)
√

(1− T 2)(1−m2T 2)

is the complete elliptic integral of the third kind.
To find (21), we note using partial fractions that

K2 =
(β + δT )2

(α− ηT )2
=

(β + δT )2(α+ ηT )2

(α2 − η2T 2)2
(33)

=
δ2η2T 4 + (α2δ2 + 4αβδη + β2η2)T 2 + α2β2

(α2 − η2T 2)2
+

2(αδ + βη)(δηT 3 + αβT )
(α2 − η2T 2)2

=
δ2

η2
− (αδ + βη)(3αδ + βη)

η2(α2 − η2T 2)
+

2α2(αδ + βη)2

η2(α2 − η2T 2)2
+

2(αδ + βη)(δηT 3 + αβT )
(α2 − η2T 2)2

.

13



The third term is handled by the standard reduction (e.g., [27], p. 515).

d

dT

(
η4T

√
(1− T 2)(1−m2T 2)
α2 − η2T 2

)
=
α2η4 + (η6 − 2α2η4[m2 + 1])T 2 + 3m2α2η4T 4 −m2η6T 6

(α2 − η2T 2)2
√

(1− T 2)(1−m2T 2)

=
2α2(α2 − η2)(m2α2 − η2)

(α2 − η2T 2)2
√

(1− T 2)(1−m2T 2)
− 3α4m2 − 2(m2 + 1)α2η2 + η4

(α2 − η2T 2)
√

(1− T 2)(1−m2T 2)

+
m2α2 − η2√

(1− T 2)(1−m2T 2)
+ η2

√
1−m2T 2

√
1− T 2

Thus we find after dropping the odd integral and boundary term that (16) becomes,

A =
4(µ1 − µ2)

λ(αδ + βη)
√
µ1

1∫
−1

(K2 − 2c1) dT√
(1− T 2)(1−m2T 2)

=
4(µ1 − µ2)

λη2(αδ + βη)
√
µ1

1∫
−1

{
δ2 − 2c1η2 − (αδ + βη)(3αδ + βη)

(α2 − η2T 2)

+
2α2(αδ + βη)2

(α2 − η2T 2)2

}
dT√

(1− T 2)(1−m2T 2)

=
8(µ1 − µ2)(δ2 − 2c1η2)
λη2(αδ + βη)

√
µ1

K(m)− 8(µ1 − µ2)
α2λη2√µ1

(3αδ + βη)Π
(
η2

α2
,m

)

+
4(µ1 − µ2)(αδ + βη)

λη2(α2 − η2)(m2α2 − η2)
√
µ1

1∫
−1

{
3α4m2 − 2(m2 + 1)α2η2 + η4

(α2 − η2T 2)
√

(1− T 2)(1−m2T 2)

− m2α2 − η2√
(1− T 2)(1−m2T 2)

− η2

√
1−m2T 2

√
1− T 2

}
dT

=
8(µ1 − µ2)
η2λ
√
µ1

[
δ2 − 2c1η2

αδ + βη
− αδ + βη

α2 − η2

]
K(m)

+
8(µ1 − µ2)
α2λη2√µ1

[
(αδ + βη)(3α4m2 − 2(m2 + 1)α2η2 + η4)

(α2 − η2)(m2α2 − η2)
− 3αδ − βη

]
Π
(
η2

α2
,m

)
− 8(µ1 − µ2)(αδ + βη)
λ(α2 − η2)(m2α2 − η2)

√
µ1
E(m) (34)

where

E(m) =

1∫
0

√
1−m2T 2

√
1− T 2

dT

is the complete elliptic integral of the second kind.
We can also write the solution K(s) in terms of elliptic integrals. Expressing the incomplete integral

corresponding to (31), we find by substituting T = −cn(ν) (see [1], p. 596) that

s =
2(µ1 − µ2)

(αδ + βη)
√
µ1

T∫
−1

dT√
(1− T 2)(1− µ2

µ1
T 2)

=
2(µ1 − µ2)

(αδ + βη)
√
µ1 + µ2

cn−1

(
T

∣∣∣∣ −µ2

µ1 + µ2

)
.

14
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Figure 5: Mode n = 2 elastica for various pressures and length L = π/2.

It follows that

T = −cn
(
ζs

∣∣∣∣ −µ2

µ1 + µ2

)
so that

K =
β − δ cn(ζs)
α+ η cn(ζs)

where

ζ =
(αδ + βη)

√
µ1 + µ2

4(µ1 − µ2)
.

This is the result of Levy [21] and Carrier [5]. As a check, at zero this is K(0) = K2 = (β − δ)/(α+ η) as it
is also a root of Q1. Similarly at L, where K(L) = K1 = (β + δ)/(α− η).

5. Reduction formulae.

In this section we collect some formulæ that will be used to simplify (34) to one set of descriptive variables.
θ satisfies the fourth order BVP (12) with multiplier λ and boundary conditions θ(0) = 0 and θ(L) = π

2
and θ′′(0) = θ′′(L) = 0 which come from the integral equation (9). (13) is its first integral with constant of

15



integration c1. Since the ODE is independent of θ we consider instead the second order ODE for K = θ′.
One constant of integration is c0 so that θ = c0 +

∫ s
0
K(σ) dσ, which is determined by c0 = θ(0) = 0.

The condition that remains on K for determining the integration constants is the total curvature condition,
that θ(L) − θ(0) = π

2 =
∫ L

0
K(σ) dσ. Thus (15) is the first integral, a first order ODE for K involving the

multiplier λ and two constants of integration c1 and H. As (15) is autonomous, the remaining constant of
integration may be interpreted as translation K(σ) 7→ K(σ + c2). The solutions K(σ;λ, c1, H, c2) of (15)
depend on four parameters which are determined by the two boundary conditions, the curvature condition
and the area constraint

∫
γ̂
x dy = A.

The second set of parameters that define solutions of (15) are (λ,K1,K2, c2), where K1 and K2 are sup
and inf of K(σ). c2 is determined henceforth by the condition K(c2) = K1 or K = K1 when s = 0. Of
course we may use the parameters (S, P,Λ, c2) just as well, where Λ = λ/S. In order to reduce the integrals
to canned elliptic functions, we expresses solutions of (15) in a new set of parameters (λ, µ1, µ2, c2). These in
turn can be expressed in terms of another set (α, β, δ, η, c2) which satisfy the relation (30), and thus account
for the same degrees of freedom. The expression for Area currently involves all of these variables. In order
to analyze the expression better we convert (34) to (λ, µ1, µ2, c2) variables only.

Using the fact that µ1 and µ2 are roots of the quadratic equation (22),

0 = ∆ = D2µ2 −
(
2S2 + 8P + 4Λ

)
µ+

(
D2 − 4Λ

)
we obtain

µ1 + µ2 =
2S2 + 8P + 4Λ

D2
(35)

µ1 − µ2 =
2
√

Λ2 + 2S2Λ + 4PS2

D2
=

2
√

(Λ + 2K1S)(Λ + 2K2S)
D2

(36)

µ1µ2 = =
D2 − 4Λ
D2

(37)

(1 + µ1)(1 + µ2) =
4S2

D2
=

4S2

S2 − 4P
(38)

1− µ1µ2 =
4Λ
D2

(39)

(1 + µ1)(1 + µ2)
1− µ1µ2

=
S2

Λ
=
S3

λ
(40)

Thus using D2 + 4P = S2, and (26)-(29) we have

αη =
2S
D

(41)

α2 − η2 = µ1 − µ2 (42)
m2α2 − η2 = m2 − 1 (43)

3α4m2 − 2(m2 + 1)α2η2 + η4 = (µ2µ1 − 2(µ1 − µ2)− 1)(1−m2) (44)

αβ + δη =
1
2
S(µ1 − µ2) (45)

µ2αβ + µ1δη =
1
2
S(µ1 − µ2) (46)

(42), (43), (45) and (46) occur by equating coefficients of (24) and (25). Equating (45) and (46) and using
(26) and (28) gives (30). Now we invert the transformation to (λ, µ1, µ2, c2) variables using (17)

λ
1
3 (1 + µ1)

1
3 (1 + µ2)

1
3

(1− µ1µ2)
1
3

= S (47)
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λ
2
3 (1− µ1µ2)

1
3

(1 + µ1)
1
3 (1 + µ2)

1
3

= Λ (48)

λ
2
3 (µ1µ2 + µ1 + µ2 − 3)

4 (1− µ1µ2)
2
3 (1 + µ1)

1
3 (1 + µ2)

1
3

= P (49)

2λ
1
3

(1− µ1µ2)
1
3 (1 + µ1)

1
6 (1 + µ2)

1
6

= D (50)

λ
2
3 [6 + 2µ1 + 2µ2 + 6µ1µ2]

16 (1− µ1µ2)
2
3 (1 + µ1)

1
3 (1 + µ2)

1
3

=
S2 − 2P − Λ

4
= c1 (51)

λ
1
3 (1 + µ2)

1
3 (µ1 − 1)

2(1− µ1µ2)
1
3 (1 + µ1)

1
6

=
√

(1 + µ1)P + Λ = β (52)

λ
1
3 (1 + µ1)

1
3 (1− µ2)

2(1− µ1µ2)
1
3 (1 + µ2)

1
6

=
√

(1 + µ2)P + Λ = δ (53)

λ
1
3 (µ1 − µ2)

(1− µ1µ2)
1
3 (1 + µ1)

1
6 (1 + µ2)

1
6

= αδ + βη (54)

λ
1
3 (1− µ1µ2)

2
3

(1 + µ1)
1
6 (1 + µ2)

1
6

= αδ − βη (55)

−
λ

2
3
[
µ1µ

2
2 + 3µ1µ2 + 3µ2 + 1

]
2(1− µ1µ2)

2
3 (1 + µ1)

1
3 (1 + µ2)

1
3

= δ2 − 2c1η2 (56)

We have used the fact that µ1 > 1 and µ2 < 1.
We now record the expressions for L, Θ and A in (λ, µ1, µ2, c2) variables. By (31), we obtain

L =
4(1− µ1µ2)

1
3 (1 + µ1)

1
6 (1 + µ2)

1
6

λ
1
3
√
µ1

K
(√

µ2

µ1

)
=

8K(m)
D
√
µ1
. (57)

Similarly (32) by (53) and (20) becomes

Θ =
4(µ1 − µ2)

(1 + µ1)
1
2 (1 + µ2)

1
2
√
µ1

Π
(

1 + µ2

1 + µ1
,

√
µ2

µ1

)
− 2(1 + µ1)

1
2 (1− µ2)

(1 + µ2)
1
2
√
µ1

K
(√

µ2

µ1

)
(58)

It is noteworthy that this expression is independent of λ. It means that the the deformations of the elastic
ring go through the same shapes, irregardless of size. Using (42) and (43) we simplify the expression (34) to
yield

A =
8

η2λ
√
µ1

[
(δ2 − 2c1η2)(µ1 − µ2)

αδ + βη
− αδ − βη

]
K(m)

−8 [(αδ + βη)(µ1µ2 − 1) + (αδ − βη)(µ1 − µ2)]
α2λη2√µ1

Π
(
η2

α2
,m

)
− 8(αδ + βη)
λ(m2 − 1)

√
µ1
E(m).

Then (54), (55) and (56) imply

A =
8µ1E

(√
µ2
µ1

)
− 4 (µ1µ2 + 2µ1 + 1)K

(√
µ2
µ1

)
λ

2
3 (1− µ1µ2)

1
3 (1 + µ1)

1
6 (1 + µ2)

1
6
√
µ1

. (59)
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Figure 6: Elastica pressure λ vs. quarter area A.

6. Computation of deformation moduli.

The explicit formulæ allow differentiation to obtain explicit rates of change. For example let us compute
the pressure modulus of area dλ/d ln A. Then there is a mapping F (µ1, µ2, λ) = (Θ(µ1, µ2), L(µ1, µ2, λ))
implicitly defines (µ1, µ2) in terms of λ so the result follows from differentiating

d lnA
dλ

=
∂ lnA
∂µ1

∂µ1

∂λ
+
∂ lnA
∂µ2

∂µ2

∂λ
+
∂ lnA
∂λ

Since Θ and L are constant, differentiating F , we find

0 =
∂ ln Θ
∂λ

=
∂ ln Θ
∂µ1

∂µ1

∂λ
+
∂ ln Θ
∂µ2

∂µ2

∂λ

0 =
∂ lnL
∂λ

=
∂ lnL
∂µ1

∂µ1

∂λ
+
∂ lnL
∂µ2

∂µ2

∂λ
+
∂ lnL
∂λ

so by Cramer’s rule, ∂µ1
∂λ

∂µ2
∂λ

 = −

 ∂ ln Θ
∂µ1

∂ ln Θ
∂µ2

∂ lnL
∂µ1

∂ lnL
∂µ2

−1 0

∂ lnL
∂λ

 =
∂ lnL
∂λ

∂ ln Θ
∂µ1

∂ lnL
∂µ2
− ∂ ln Θ

∂µ2

∂ lnL
∂µ1

 ∂ ln Θ
∂µ2

−∂ ln Θ
∂µ1


which means that

d lnA
dλ

=

∂ lnL
∂λ

(
∂ lnA
∂µ1

∂ ln Θ
∂µ2

− ∂ lnA
∂µ2

∂ ln Θ
∂µ1

)
∂ ln Θ
∂µ1

∂ lnL
∂µ2

− ∂ ln Θ
∂µ2

∂ lnL
∂µ1

+
∂ lnA
∂λ

. (60)

Let us compute the six partial derivatives in this formula. The basic differentiation formulæ for the elliptic
functions are

dE(m)
dm2

=
E(m)−K(m)

2m2
(61)
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dK(m)
dm2

=
E(m)

2m2(1−m2)
− K(m)

2m2
(62)

d

d q

[
1
√
q
K
(
p

q

)]
= − 1

2(q − p)√q
E
(
p

q

)
(63)

dΠ(n,m)
dm2

=
E(m)

2(m2 − n)(1−m2)
− Π(n,m)

2(m2 − n)
(64)

dΠ(n,m)
dn

=
(m2 − n2)Π(n,m)
2(1− n)(m2 − n)n

− K(m)
2(1− n)n

− E(m)
2(1− n)(m2 − n)

. (65)

Differentiating (57), we find using (62) or (63),

lnL = ln 4 +
ln(1− µ1µ2)

3
+

ln(1 + µ1)
6

+
ln(1 + µ2)

6
− lnλ

3
− lnµ1

2
+ ln

(
K
(√

µ2

µ1

))
∂ lnL
dµ1

=
1− 2µ2 − 3µ1µ2

6(1− µ1µ2)(1 + µ1)
−

E
(√

µ2
µ1

)
2(µ1 − µ2)K

(√
µ2
µ1

) (66)

∂ lnL
dµ2

=
µ1µ2 − 2µ2 − 3

6(1− µ1µ2)(1 + µ2)µ2
+

µ1E
(√

µ2
µ1

)
2µ2(µ1 − µ2)K

(√
µ2
µ1

) (67)

∂ lnL
dλ

= − 1
3λ
. (68)

Differentiating (58), we find using (62), (64) and (65),

Θ =
2

(1 + µ1)
1
2 (1 + µ2)

1
2
√
µ1

[
2(µ1 − µ2)Π

(
1 + µ2

1 + µ1
,

√
µ2

µ1

)
− (1 + µ1)(1− µ2)K

(√
µ2

µ1

)]
ln Θ = ln 2− ln(1 + µ1)

2
− ln(1 + µ2)

2
− lnµ1

2

+ ln
[
2(µ1 − µ2)Π

(
1 + µ2

1 + µ1
,

√
µ2

µ1

)
− (1 + µ1)(1− µ2)K

(√
µ2

µ1

)]
∂ ln Θ
dµ1

= − 1
2(1 + µ1)

+
2(µ1 − µ2)2Π

(
1+µ2
1+µ1

,
√

µ2
µ1

)
+ (1 + µ1)(µ1 − µ2)µ2K

(√
µ2
µ1

)
+ (1− µ2

1)(1− µ2)E
(√

µ2
µ1

)
2(µ1 − µ2)(1 + µ1)

[
2(µ1 − µ2)Π

(
1+µ2
1+µ1

,
√

µ2
µ1

)
− (1 + µ1)(1− µ2)K

(√
µ2
µ1

)]
=

(µ1 − µ2)(1 + µ2)K
(√

µ2
µ1

)
+ (1− µ1)(1 + µ2)E

(√
µ2
µ1

)
2(µ1 − µ2)

[
2(µ1 − µ2)Π

(
1+µ2
1+µ1

,
√

µ2
µ1

)
− (1 + µ1)(1− µ2)K

(√
µ2
µ1

)] (69)

∂ ln Θ
dµ2

= − 1
2(1 + µ2)

+

 2(µ1 − µ2)2µ2Π
(

1+µ2
1+µ1

,
√

µ2
µ1

)
+ (1 + µ1)(1 + µ2

2)(µ1 − µ2)K
(√

µ2
µ1

)
−(1− µ2

2)(1 + µ1)µ1E
(√

µ2
µ1

) 
2(µ1 − µ2)(1 + µ2)µ2

[
2(µ1 − µ2)Π

(
1+µ2
1+µ1

,
√

µ2
µ1

)
− (1 + µ1)(1− µ2)K

(√
µ2
µ1

)]
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Figure 7: Modulus dλ/d lnA versus λ.

=
(1 + µ1)

[
(µ1 − µ2)K

(√
µ2
µ1

)
− (1− µ2)µ1E

(√
µ2
µ1

)]
2(µ1 − µ2)µ2

[
2(µ1 − µ2)Π

(
1+µ2
1+µ1

,
√

µ2
µ1

)
− (1 + µ1)(1− µ2)K

(√
µ2
µ1

)] (70)

(71)

Differentiating (59), we find using (62) and (64),

A =
8µ1E

(√
µ2
µ1

)
− 4 (µ1µ2 + 2µ1 + 1)K

(√
µ2
µ1

)
λ

2
3 (1− µ1µ2)

1
3 (1 + µ1)

1
6 (1 + µ2)

1
6
√
µ1

.

lnA = ln 4− 2 lnλ
3
− ln(1− µ1µ2)

3
− ln(1 + µ1)

6
− ln(1 + µ2)

6

+ ln

2µ1E
(√

µ2
µ1

)
− (µ1µ2 + 2µ1 + 1)K

(√
µ2
µ1

)
√
µ

1


∂ lnA
dµ1

=
3µ1µ2 + 2µ2 − 1

6(1− µ1µ2)(1 + µ1)

+
(µ1µ2 + 2µ1 + 1)E

(√
µ2
µ1

)
− 2(µ1 − µ2)(1 + µ2)K

(√
µ2
µ1

)
2(µ1 − µ2)

[
2µ1E

(√
µ2
µ1

)
− (µ1µ2 + 2µ1 + 1)K

(√
µ2
µ1

)] (72)

∂ lnA
dµ2

=
3µ1µ2 + 2µ1 − 1

6(1− µ1µ2)(1 + µ2)
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Figure 8: Mode n = 3 elastica for various pressure and length L = π/2.

−
(µ1µ2 + 2µ2 + 1)µ1E

(√
µ2
µ1

)
− (1− µ1µ2)(µ1 − µ2)K

(√
µ2
µ1

)
2(µ1 − µ2)µ2

[
2µ1E

(√
µ2
µ1

)
− (µ1µ2 + 2µ1 + 1)K

(√
µ2
µ1

)] (73)

∂ lnA
∂ λ

= − 2
3λ
. (74)

These expressions are used in equation (60) to obtain the modulus.

7. Numerical results.

First we observe that the circle is the limiting figure as D → 0. The formulas (23) are not effective for
computation for small D, however, the expressions (20,32) may be recomputed in terms of D2µi and become
nonsingular as D → 0. To see the limiting circle, make the change of variable

K =
S

2
+
D

2
T,

in equation (32) to find

Θ =
∫ 1

−1

2(S +DT )
√
S dT√

(1− T 2)(4S3 − SD2 + 4λ+ 4S2TD + ST 2D2)
→ π

√
S3

√
S3 + λ

(75)

asD → 0. Since π/n = Θ(L) for n-th mode buckling and since the initial circle has radius R0 = 1/K0 = 2/S0,
it follows that the pressure needed to deform the ring is given by

λ =
8(n2 − 1)

R3
0

⇐⇒ P =
B(n2 − 1)

R3
0

Of course this is the familiar pressure needed to buckle the ring!
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Figure 9: Pressure λ vs. quarter area A for elastica (solid line) and peanuts (dashed line).

Therefore, we may identify the limiting values of µ1 and µ2 from (23) also. As S is bounded away
from zero, we see that µ1 → ∞ as D → 0 since the numerator stays away from zero. Rationalizing the
denominator in (23), we see that

µ2 =
D2S − 4λ

2S3 −D2S + 2λ+ 2
√

(λ+ S3)2 − S4D2
→ − λ

S3 + λ
= −3

4
,

if Θ(L) = π
2 as is the case here.

We may also compute the modulus at the circle by expanding S and λ in powers of D near D = 0.
Expanding S1/2 and (4S3 − SD2 + 4λ+ 4S2TD+ ST 2D2)−1/2 in powers of D in (75) and (20), integrating
and equating Θ = π/2 and L = π/2, we may solve for the coefficients

S ≈ S0 + S1D + S2D
2 + . . . = 2 +

1
32
D2 + . . . ,

λ ≈ λ0 + λ1D + λ2D
2 + . . . = 24 +

9
16
D2 + . . . .

Using these and (17) which implies 4c1 = (S2 + D2)/2 + λ/S in λA given by (21), after expanding and
integrating we find

A ≈ a0 + a1D + a2D
2 + . . . =

π

4
− π

96
D2 + . . . .

Thus, using L’Hospitals’s rule, the modulus of compression for the elastica at the circle is

A
dλ

dA
=
πλ2

4a2
= −13.5.

Using the described procedure, we list dimensions for several closed curves in Fig. 11. We also plot some
n = 2 elastic rings in Fig. 5. These were obtained from the choices of K2’s indicated.1 I = 4πA0/L

2
0 is the

1This table was computed by using the MAPLE computer algebra system.
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Figure 10: Pressure λ vs. modulus dλ/d lnA for elastica (solid line) and peanuts (dashed line).

isoperimetric ratio. The coordinates X = x(L) and Y = y(L) are the endpoints of the solution segment γ.
Thus X/Y is the ratio of the neckwidth to the wingspan. E0 = 4E(L) is the energy of the closed figure.
L0 = 4L is the length of the full loop, A0 is its enclosed area. Kmax = K1 and Kmin = K2 are the minimum
and maximum curvatures. λ is the Lagrange multiplier parameter in (14), and is always λ = 1 for these
computations. The first row corresponds to the circle.

The rings remain embedded for K2 > −.2878, suggesting that the embedded minimizer of the variational
problems is not given by these figures for isoperimetric ratios below the critical I0 = .270949. The ratio
Ic = .819469 is the transition point between convex and nonconvex minimizers. Observe that when K2 =
−.2878 then K1 = 1.1282 so that (µ1, µ2) = (2.364,−.5811). The figures become nonconvex at K2 = 0 when
K1 = .7189988 and (µ1, µ2) = (13.485428,−.72386).

The area response to pressure can be computed as follows: for µ1 ∈ [2.364,∞) given, we solve (58) Θ = π
2

for µ2. Then for fixed λ = 1, say, we can compute L and A from equations (57) and (59). Then by scaling
by a factor c = L0/L, where L0 = π

2 for the unit circle, L̃ = cL = L0 is held fixed and we get the values
Ã = 4c2A and λ̃ = 1/c3 for the corresponding area and dimensionless pressure. We obtain the area response
to pressure, computed theoretically, plotted on Fig. 6. Note that since R → 2 · 31/3 as D → 0, we see that
L→ π31/3 so c→ 2−13−1/3 so λ̃→ 24. It is tabulated in Fig. 11

Continuing in this fashion, we now show the plot of the deformation modulus of the ring. As the modulus
dλ/d ln A is expressible in terms of the µi’s through formula (60), whose terms are computed using (66)–(74),
we display the result in Fig. 7. A short tabulation is in Fig. 13.

What evidence is there that the other closed curves that satisfy (14) are not the minimizers such as if
K is periodic of period L0/n where the mode n 6= 2? We must have at least n = 2 (four critical points of
curvature) because of the Four Vertex Theorem for closed plane curves [10]. For example, there are closed
curves with Θ(L) = π

3 . Then L0 = 6L and the other variables are suitably increased. The curve γ = γ([0, L])
makes up one sixth of the boundary. The area inside Γ is then six times the area between γ and the y-axis
plus the area of the equilateral triangle whose base is 2x(L). Thus A0 = 6A(L) +

√
3[x(L)]2. This time, the

ratio Ic = .935405 is the transition point between convex and nonconvex minimizers and the figures remain
embedded for K2 > −.516. Fig. 12 has short table of closed n = 3 solutions. Ri and Ro are the distances to
the center from points of max curvature and minimum curvature. Notice that the energy is higher for this
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family of solutions than for the n = 2 family. Several examples are plotted in Figure 8.
Acknowledgement: A.T. thanks Anders Linner for helpful remarks.
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Dimensions of some closed n = 2 solutions
of the Euler Lagrange equation.

I L0E0/16 X/Y 4X/L0 L0Kmax L0Kmin L3
0λ K2

1.000000 2.467401 1.000000 .636620 6.283185 6.283185 93.0188 .3467
.996952 2.489981 .913645 .607197 7.140493 5.440264 93.1786 .3000
.986799 2.565479 .827725 .573754 8.086784 4.542239 93.7152 .2500
.969301 2.696626 .747252 .538229 9.067561 3.645911 94.6560 .2000
.944192 2.887138 .671051 .500500 10.089812 2.747722 96.0428 .1500
.911147 3.142166 .598089 .460398 11.162443 1.843779 97.9370 .1000
.869755 3.468829 .527406 .417693 12.297110 .929642 100.4284 .0500
.819469 3.877073 .458052 .372066 13.509586 .000000 103.6482 .0000
.759535 4.381159 .389001 .323060 14.822106 -.951833 107.7935 -.0500
.688845 5.002399 .319027 .269997 16.267738 -1.934825 113.1737 -.1000
.605652 5.774732 .246471 .211802 17.899348 -2.961980 120.3075 -.1500
.558499 6.234491 .208474 .180246 18.811504 -3.498161 124.8031 -.1750
.506900 6.757775 .168724 .146597 19.810861 -4.054290 130.1591 -.2000
.449965 7.361994 .126516 .110312 20.925359 -4.635973 136.6769 -.2250
.386270 8.075069 .080740 .070527 22.200262 -5.251849 144.8561 -.2500
.313266 8.947093 .029439 .025704 23.717686 -5.916782 155.6248 -.2750
.297285 9.146632 .018307 .015977 24.060199 -6.056768 158.2139 -.2800
.290858 9.227832 .013835 .012072 24.199177 -6.112519 159.2813 -.2819
.283012 9.327692 .008381 .007311 24.369799 -6.180138 160.6050 -.2842
.280424 9.360815 .006582 .005741 24.426323 -6.202339 161.0468 -.2850
.273533 9.449446 .001796 .001566 24.577413 -6.261195 162.2355 -.2870
.271792 9.471947 .000586 .000511 24.615733 -6.276010 162.5389 -.2875
.270919 9.483250 -.000020 -.000018 24.634978 -6.283433 162.6915 -.2878
.270043 9.494589 -.000628 -.000548 24.654280 -6.290866 162.8448 -.2880
.262969 9.586610 -.005539 -.004828 24.810797 -6.350717 164.0946 -.2900
.225459 10.086698 -.031575 -.027462 25.657864 -6.661573 171.0751 -.3000

Figure 11: Table of selected n = 2 solutions.
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Dimensions of some closed n = 3 solutions
of the Euler Lagrange equation.

I L0E0/16 Ri/Ro 6Ri/L0 L0Kmax L0Kmin L3
0λ K2

1.000000 2.467401 1.000000 .636620 6.283185 6.283185 248.0502 .2500
.997486 2.517074 .951033 .619948 7.551076 5.029361 248.4668 .2000
.977085 2.923221 .857998 .581947 10.170077 2.526227 251.9051 .1000
.935405 3.770823 .768858 .537321 12.943128 0.000000 259.2699 .0000
.871105 5.128532 .680524 .485215 15.943671 -2.590495 271.6242 -.1000
.781953 7.122885 .589344 .424075 19.292342 -5.302010 291.1063 -.2000
.663623 10.005778 .489695 .350832 23.219891 -8.228261 322.3892 -.3000
.505282 14.399987 .369229 .257937 28.300094 -11.572790 378.4027 -.4000
.400689 17.751277 .289918 .197048 31.828129 -13.578226 429.2513 -.4500
.249354 23.514553 .166285 .106787 37.626785 -16.262423 537.6081 -.5000
.200059 25.722796 .121863 .076431 39.824509 -17.084904 587.4178 -.5100
.159972 27.640560 .082986 .050930 41.760762 -17.680307 635.9165 -.5140
.113622 30.134387 .035783 .021363 44.274668 -18.399463 704.3099 -.5170

Figure 12: Table of selected n = 3 solutions.

The modulus dλ/d ln A when L = π/2
for some selected n = 2 shapes.

λ µ1 I Modulus
43.214273 2.236000 0.244317 -11.722405
43.150076 2.242250 0.245657 -11.749869
42.712516 2.286000 0.254904 -11.933148
41.620321 2.404750 0.278880 -12.360812
39.823458 2.636000 0.321361 -12.971827
37.548166 3.017250 0.381373 -13.580778
35.157118 3.586000 0.453420 -14.023526
32.953310 4.379750 0.529819 -14.254401
31.090308 5.436000 0.603562 -14.318649
29.595549 6.792250 0.670028 -14.284643
28.429449 8.486000 0.727167 -14.205908
27.530759 10.554750 0.774806 -14.114369
26.839726 13.036000 0.813806 -14.025888
26.306443 15.967250 0.845432 -13.946938
25.892036 19.386000 0.870992 -13.879212
25.567207 23.329750 0.891660 -13.822248
25.310187 27.836000 0.908424 -13.774771
25.104864 32.942250 0.922085 -13.735322
24.939288 38.686000 0.933282 -13.702527
24.804548 45.104750 0.942513 -13.675195
24.693951 52.236000 0.950173 -13.652329

Figure 13: Table of Modulus for selected shapes.
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