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The URL for these Beamer Slides: “Geometric Analysis: Intrinsic
Geometry”
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3. Outline.

Hyperbolic Space.

Parabolicity.

Complete Manifolds with Finite Total Curvature.



4. Extrinsic Geometry.

Figure: Extrinsic: Coordinate Charts for Surface in E3

Surfaces S ⊂ R3 inherit the metric ds2 from E3. By the Korn -
Lichtenstein theorem, ∃ local isothermal charts, σ : U → S , σ̃ : Ũ → S

φ(z)2 |dz |2 = σ∗
(
ds2
)
, φ̃(z̃)2 |dz̃ |2 = σ̃∗

(
ds2
)

where z = x + iy so |dz |2 = dx2 + dy2.



5. Intrinsic Geometry.-

The induced metrics are consistently defined. The transition function
g : U → Ũ given by g = σ̃−1 ◦ σ is holomorphic (if orientation preserved)
which identifies local metrics by a change of variables

φ(z)2 |dz |2 = φ̃(g(z))2
∣∣∣∣dg

dz

∣∣∣∣2 |dz |2 = g∗
(
φ̃(z̃)2 |dz̃ |2

)
.

Thus, oriented surfaces with a Riemannian metric have the structure of a
Riemann Surface.

We don’t need to embed the surface in Euclidean Space as long as we
have a cover S by charts and define the INTRINSIC METRIC of S
chartwise in a consistent way.



6. Intrinsic metric.

The Riemannian metric gives length and angles of vectors and lengths of
curves. If γ : [α, β] → S then

L(γ) =

∫ β

α
φ
(
γ(t)

)
|γ̇(t)| dt

The Riemannian metric induces a distance function on S . If P,Q ∈ S ,

d(P,Q) = inf

{
L(γ) :

γ : [α, β] → S is piecewise C 1,
γ(α) = P, γ(β) = Q

}

Theorem

(S , d) is a metric space.



7. Hyperbolic Space invented to show independence of 5th Postulate.

Euclid’s Postulates are the following:

1 any two points may be joined by a line segment;

2 any line segment may be extended to form a line;

3 a circle may be drawn with any given center and distance;

4 any two right angles are equal;

5 (Playfair’s Version) Given any line m and a point p, there is a
unique line through p and parallel to m.



8. Saccheri’s Axiom. Example of Gauß, Bolyai & Lobachevski.

Figure: m′ and m′′ are parallels to
m through P. This is Poincaré’s
model of the Hyperbolic Plane H2.
The space is the unit disk. Lines are
diameters or arcs of circles that are
perpendicular to the boundary
circle.

In letters found after his death, Gauß
had already realized in 1816 that there
are geometries in which the Fifth
Postulate fails. J. Bolyai and
N. Lobachevski independently proved it
in 1823 and 1826 by essentially
constructing Poincaré’s model. They
assumed an axiom of Saccheri, who
tried to reach a contradiction from it to
prove the Fifth postulate.

5 Given any line m and a point p not
in m, there are at least two lines
through p and parallel to m.

This axiom is also known as the
hyperbolic axiom. In 1854, Riemann
showed a consistent geometry may also
be constructed assuming instead that
no lines are parallel.



9. The metric of the Poincaré’s Model. H2 = (D, ds2).

Let D = {z ∈ C : |z | < 1} be the unit disk. The Poincaré metric is

ds2 = φ(z)2 |dz |2 where φ(z) =
2

1− |z |2
.

Theorem (Hilbert, 1901)

There is no C 2 isometric immersion σ : H2 → E3.

The metric is invariant under rotation about the origin z 7→ e iαz (α ∈ R)
and reflection z 7→ z̄ . It is also invariant under the holomorphic self-maps
of D. Such maps f : D → D that fix the circle and map p ∈ D to 0 have
the form

w = f (z) =
e iα(z − p)

1− p̄z



10. The metric of the Poincaré’s Model.

They are isometries of the Poincaré plane because the pulled-back metric

f ∗(ds2) = φ(w)2|dw |2

=
4(

1− |z−p|2
|1−p̄z|2

)2

(1− |p|2)2|dz |2

|1− p̄z |4

=
4(1− |p|2)2|dz |2

(|1− p̄z |2 − |z − p|2)2

=
4(1− |p|2)2|dz |2(

(1− p̄z)(1− pz̄)− (z − p)(z̄ − p̄)
)2

=
4(1− |p|2)2|dz |2(

1− pz̄ − p̄z + |p|2|z |2 − |z |2 + p̄z + pz̄ − |p|2
)2

=
4(1− |p|2)2|dz |2

(1− |p|2)2(1− |z |2)2
=

4|dz |2

(1− |z |2)2
= φ(z)2|dz |2.



11. Geodesics.

A geodesic is a curve that locally minimizes the length. A calculus of
variations argument shows geodesics satisfy a 2nd order ODE.

If ζ : [a, b] → U is minimizing in an isothermic patch, and η : [a, b] → C
is a varation such that η(a) = η(b) = 0, then the length L(ζ + εη) is
least when ε = 0 so

0 =
d

dε

∣∣∣∣
ε=0

L(ζ + εη) =
d

dε

∣∣∣∣
ε=0

∫ b

a
φ(ζ + εη)

∣∣∣ζ̇(t) + εη̇(t)
∣∣∣ dt

=

(∫ b

a
∇φ(ζ + εη) • η|ζ̇ + εη̇|+ φ(ζ + εη)

(ζ̇ + εη̇) • η̇
|ζ̇ + εη̇|

dt

)∣∣∣∣∣
ε=0

=

∫ b

a

(
∇φ(ζ)|ζ̇| − d

dt

[
φ(ζ)

ζ̇

|ζ̇|

])
• η



12. The geodesic equation.

Since η is arbitrary, the geodesic satisfies the 2nd order ODE system

d

dt

[
φ(ζ)

ζ̇

|ζ̇|

]
−∇φ(ζ)|ζ̇| = 0. (1)

Theorem

For every P ∈ S there is a neighborhood U such that if Q1,Q2 ∈ U there
there is a unique smooth distance realizing curve ζ : [α, β] → S from Q1

to Q2 such that d(Q1,Q2) = L(ζ), ζ([α, β]) ⊂ U and ζ satisfies (1).
Moreover, solutions of (1) are locally distance realizing.



13. Geodesics in H2 example.

For example, in H2, ζ(t) = (t, 0) is geodesic. |ζ̇| = 1,

φ
(
ζ(t)

)
=

2

1− t2
, ∇φ =

4(u, v)

(1− u2 − v2)2
.

Substituting
d

dt

[
2(1, 0)

1− t2

]
− 4(t, 0)

(1− t2)2
= 0.



14. Geodesic equation for unit speed curves.

The length is independent of parametrization. Thus we may convert to
arclength

s =

∫ t

α
φ
(
ζ(t)

)
|ζ̇(t)| dt

so

φ|ζ̇| d
ds

=
d

dt
, φζ ′ =

ζ̇

|ζ̇|
,

writing “ ′ ” for arclength derivatives.

d

ds

[
φ(ζ)

ζ̇

|ζ̇|

]
−∇ lnφ(ζ)

or
ζ ′′ + 2(∇ lnφ • ζ ′)ζ ′ − |ζ ′|2∇ lnφ = 0. (2)

One checks that φ|ζ ′| is constant along integral curves of (2) so solutions
have constant speed.



15. Completeness.

We shall assume our surfaces are complete. The geodesic equation is

ζ ′′ + 2(∇ lnφ • ζ ′)ζ ′ − |ζ ′|2∇ lnφ = 0. (3)

S is complete if solutions of (3) can be infinitely extended.

Theorem (Hopf - Rinow)

S is complete if and only if (S , d) with the induced distance is a
complete metric space. Completeness implies that for all Q1,Q2 ∈ S
there there is a distance realizing geodesic ζ : [α, β] → S from Q1 to Q2

such that d(Q1,Q2) = L(ζ).



16. Polar coordinates.

Fix P ∈ S . The exponential map expP : TpS → S takes a vector
V ∈ TPS with length r and maps it to the endpoint of a geodesic of
length r which starts at P and heads in the direction V . (So if
r = φ(p)|V |, let ζ(t) be the solution of (2) with ζ(0) = P and
ζ ′(0) = V

r . Define expP(V ) = ζ(r).)

For example, if P = 0 in H2 then the length of the segment from (0, 0)
to (t, 0) in H2 is

ρ =

∫ t

0

2 dt

1− t2
= ln

(
1 + t

1− t

)
⇐⇒ t = tanh

(ρ
2

)
.

The exponential map takes (ρ, θ) in polar coordinates of E2 = TPH2 to
(t, θ) ∈ H2. Pulling back the Poincaré metric

dρ2+sinh2ρ dθ2 =
sech4

(ρ
2

)
dρ2 + 4 tanh2

(ρ
2

)
dθ2(

1− tanh2
(ρ

2

))2 = exp∗P

(
4(dt2 + t2dθ2)

(1− t2)2

)



17. Area of a disk. Length of a circle.

In polar coordinates, H2 = ( R2, dρ2 + sinh2ρ dθ2 ). Let B(0, r) be the
disk about the origin of radius r (measured in H2.). Then

L
(
∂B(0, r)

)
=

∫ 2π

0
sinh r dθ = 2π sinh r ,

A
(
B(0, r)

)
=

∫ 2π

0

∫ r

0
sinh r dr dθ = 2π(cosh r − 1).

The Taylor expansion near r = 0 gives

A
(
B(0, r)

)
= πr2

(
1 +

r2

12
+ · · ·

)
= πr2

(
1− K (0) r2

12
+ · · ·

)
thus K (0) = −1.



18. Polar coordinates for general surfaces.

If S is complete, then expp : TPS → S is onto. Let e1, e2 ∈ TpS be
orthonormal vectors. Let V (θ) = cos(θ)e1 + sin(θ)e2. Consider the unit
speed geodesic γ(t, θ) = expP(tV (θ)) from P in the V (θ) dierection. For
each r > 0 let Θ(r) ∈ S1 be the set of directions V (θ) such that γ(•, θ)
is minimizing over [0, r ]. Thus if r1 < r2 we have Θ(r2) ⊂ Θ(r1). Let
U = ∪r>0rΘ(r). It turns out that expP(U) covers all of S except for a
set of measure zero.
The metric of S in polar coordinates becomes

ds2 = dr2 + J(r , θ)2 dθ (4)

where J ≥ 0 in U .
(The fact that circles of radius r about P cross the geodesic rays
emanating from P orthogonally, hence no cross term, is a lemma of
Gauß.)



19. Jacobi Equation.

The variation vector field measures the spread of geodesics as they are
rotated about P ∈ S .

V =
d

dθ
γ(t, θ) (5)

is perpendicular to γ̇(t, θ) and has length J(t, θ) as in the metric in polar
coordinates (4). By differentiating the geodesic equation (2) with respect
to θ one finds the Jacobi Equation

Jss(s, θ) + K
(
γ(s, θ)

)
J(s, θ) = 0 (6)

with initial conditions, J(0, θ) = 0 and Js(0, θ) = 1.

For example, in H2, J(s, θ) = sinh s and K ≡ −1.
For E2, J(s, θ) = s and K ≡ 0.



20. Harmonic functions.

Let ds2 = φ(z)2 |dz |2 be the metric in an isothermal coordinate patch.
The intrinsic area form, gradient and Laplacian are given by the formulas

dA = φ2 dx dy ; |∇u|2 =
u2
x + u2

y

φ2
; ∆u =

uxx + uyy

φ2
=

4uzz̄

φ2
.

Let u ∈ C 1(Ω) be a function on a domain Ω ⊂ S . Then the energy or
Dirichlet integral is invariant under conformal change of metric∫

Ω
|∇u|2 dA =

∫
Ω

u2
x + u2

y dx dy .

A function is harmonic if ∆u = 0 and subharmonic if ∆u ≥ 0 (at least
weakly.) These notions agree irregardless of conformal metric φ2 |dz |2.



21. Parabolicity.

We seek generalizations of the Riemann mapping theorem to surfaces.

Theorem (Riemann Mapping Theorem)

Let Ω ⊂ R2 be a simply connected open set that is not the whole plane.
Then there is an analytic, one-to-one mapping onto the disk f : Ω → D.

A noncompact, simply connected surface S is said to be parabolic if it is
conformally equivalent to the plane. That is, there is a global isothermal
coordinate chart σ : C → S . Otherwise the surface is called hyperbolic.
The sphere S2 is compact, so it is neither parabolic nor hyperbolic.

Theorem (Koebe’s Uniformization Theorem)

Let S be a simply connected Riemann Surface. Then S is conformally
equivalent to the disk, the plane or to the sphere.

Conceivably, the topological disk could have many conformal structures,
but the uniformization theorem tells us there are only two. The
topological sphere has only one conformal structure.



22. Characterizing hyperbolic manifolds.

For each p ∈ S , the positive Green’s function z 7→ g(z , p) is harmonic for
z ∈ S − {p}, g(z , p) > 0, infz g(z , p) = 0 and in a isothermal patch
around p, g(z , p) + ln |z − p| has a harmonic extension to a
neighborhood of p (so g(z , p) →∞ as z → p.)

Theorem

Let S be a simply connected noncompact Riemann surface. Then the
following are equivalent.

S is hyperbolic.

S has a positive Green’s function.

S has a negative nonconstant subharmonic function.

S has a bounded nonconstant harmonic function.

e. g., u = ax + by is a bounded harmonic function on D hence on H2,
but there are no bounded harmonic functions on E2.



23. A theorem relating curvature and function theory.

A surface s is said to have finite total curvature if∫
S
|K | dA <∞.

Theorem (Blanc & Fiala, Huber)

Let S be a noncompact, complete surface with finite total curvature.
Then S is conformally equivalent to a closed Riemann surface of genus g
with finitely many punctures Σg − {p1, . . . , pk}.

For example, E2 has zero total curvature and is conformal to S2 − {S}
via stereographic projection.

To illustrate something of the ways of geometric analysis, we sketch the
proof for the simply connected case.



24. Growth of a geodesic circle.

Lemma

Assume that S is a complete, noncompact, simply connected surface
with finite total curvature ∫

S
|K | dA = C <∞.

Then
L
(
∂B(p, r)

)
≤ (2π + C )r .

Proof Idea. By the Jacobi equation (5),

Jr (r , θ)− 1 = Jr (r , θ)− Jr (0, θ)

=

∫ r

0
Jrr (r , θ) dr

= −
∫ r

0
K
(
γ(r , θ)

)
J(r , θ) dr .



25. Growth of a geodesic circle proof.

The length L(r) = L
(
∂B(p, r)

)
grows at a rate

dL

dr
= lim

h→0+

L(r + h)− L(r)

h

= lim
h→0+

1

h

(∫
Θ(r+h)

J(r + h, θ) dθ −
∫

Θ(r)
J(r , θ) dθ

)

= lim
h→0+

(∫
Θ(r+h)

J(r + h, θ)− J(r , θ)

h
dθ − 1

h

∫
Θ(r)−Θ(r+h)

J(r , θ) dθ

)

≤
∫

Θ(r)
Jr (r , θ) dθ

=

∫
Θ(r)

(
1−

∫ r

0
K
(
γ(r , θ)

)
J(r , θ) dr

)
dθ

≤ 2π +

∫ r

0

∫
Θ(r)

∣∣K(γ(r , θ))∣∣ J(r , θ) dθ dr

= 2π +

∫
B(P,r)

|K | dA = ≤ 2π + C .



26. Blanc & Fiala’s theorem.

Theorem (Blanc & Fiala)

Let S be a complete, noncompact, simply connected Riemann surface of
finite total curvature. Then S is parabolic.

Proof idea. Suppose not. Then S has a global isothermal chart
σ : D → S . Then u = − ln |z | is a positive Green’s function on S . Let
ε > 0 and K ⊂ D− B(0, ε) be any compact domain. On the one hand,
the energy is uniformly bounded

E(K ) =

∫
K

u2
x + u2

y dx dy ≤ −2π ln ε.

This estimate is done in the background D metric. But energy is
conformally invariant, so it will hold in the surface metric also.



27. Blanc & Fiala’s theorem. -

Indeed, let R = sup{|z | : z ∈ K} < 1 and A = {z ∈ D : ε ≤ |z | ≤ R} be
an annulus containing K . Using the fact that u > 0 and ur < 0 on K , by
integrating by parts,

E(K ) ≤ E(A) = −
∫
A

u∆0u dx dy +

∮
|z|=ε

u
∂u

∂n
+

∮
|z|=R

u
∂u

∂n

≤ 0−
∮
|z|=ε

ln ε

ε
+ 0

≤ −2π ln ε

since on |z | = ε, u = − ln ε and ur = −1
ε and L({z : |z | = ε}) = 2πε.



28. Blanc & Fiala’s theorem. - -

On the other hand, bounded total curvature will imply that the energy
will grow to infinity. For the remainder of the argument, work in intrinsic
polar coordinates. Let B(0, r) denote the intrinsic ball for r ≥ 1 and

E(r) =

∫
B(0,r)−B(0,1)

|Du|2 dA =

∫ r

1

∫
∂B(0,r)

|Du|2 ds dr

where s is length along ∂B(0, r). By the Schwartz inequality,

L(r)
dE
dr

=

∫
∂B(0,r)

ds

∫
∂B(0,r)

|Du|2 ds ≥

(∫
∂B(0,r)

|Du| ds

)2

≥

(∮
∂B(0,r)

∂u

∂n

)2

=

(∫
B(0,r)−B(0,δ)

∆u dA−
∮

∂B(0,δ)

∂u

∂n

)2

= c0

for any fixed δ ∈ (0, 1] where c0 > 0 is independent of r .
In fact, c0 → 4π2 as δ → 0.



29. Blanc & Fiala’s theorem. - - -

Now, using the length lemma,

dE
dr

≥ c0

(2π + C )r
.

Integrating, this says

E(r) ≥ c0 ln r

(2π + C )
→∞ as r →∞.

This is a contradiction because the energy is invariant under conformal
change and is uniformly bounded.

To understand the argument, try using it to prove E2 is parabolic!



30. Application to harmonic maps.

A harmonic map locally minimizes energy of a map between surfaces,
generalizing harmonic functions and geodesics.
If h : (S1, φ(z)2 |dz |2) → (S2, ψ(w)2 |dw |2) is harmonic, then it satisfies
the PDE system

hzz̄ + 2
ψw (h)

ψ(h)
hz hz̄ = 0.

Theorem

If f : S̃ → S1 is a conformal diffeomorphism and h : S1 → S2 is harmonic,
then h ◦ f : S̃ → S2 is harmonic.



31. Existence of harmonic diffeomorphisms.

Theorem (Treibergs 1986)

Let I ⊂ ∂D be any closed set with at least three distinct points and
Conv(I) its convex hull in H2, then there is a complete, spacelike entire
constant mean curvature surface S in Minkowski Space such that the
Gauß map G : S → Conv(I) is a harmonic diffeomorphism.

Minkowski Space is E2,1 = (R3, dx2 + dy2 − dz2).
An entire, spacelike surface S ⊂ E2,1 is the graph of a function
S =

{(
x , y , u(x , y)

)
: (x , y) ∈ R2

}
such that u2

x + u2
y < 1.

The Gauß map is the map given by the future-pointing unit normal

G =
(ux , uy , 1)√
1− u2

x − u2
y

: S → H.

The hyperboloid H = {(x , y , x) : x2 + y2 − z2 = −1, z > 0} consists of
all future-pointing vectors of length −1.
The hyperboloid model (H, dx2 + dy2 − dz2) is isometric to H2.



32. Harmonic diffeomorphisms Conv(I).

Figure: Harmonic diffeomorphisms



33. Harmonic diffeomorphisms to ideal polygons.

Corollary

Let I ⊂ ∂B be a closed set with at least three points.

If I is finite, there is a harmonic diffeomorphism

h : C → Conv(I).

If I has nonempty interior, then there is a harmonic diffeomorphism

h : B → Conv(I).

Since S is convex, its total curvature is −A
(
G(S)

)
= π(2− ]I) by the

Gauß-Bonnet Theorem in H2. By Blanc-Fiala’s Theorem, S is conformal
to the plane if I is finite.

If I has nonempty interior then one can construct a nonconstant
bounded harmonic function on S so it is conformal to the disk.



Thanks!




