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5. Triangle Inequality.

For any two numbers x , y ∈ R we
have the Triangle Inequality.
|x + y | ≤ |x |+ |y |.

Figure 1: Euclidean Triangle.

The name comes from the fact that
the sum of lengths of two sides of a
triangle exceeds the length of the
third side so the lengths satisfy

C ≤ A + B.

If we have sides given as vectors x ,
y and x + y then the lengths satisfy

|x + y | ≤ |x |+ |y |.



6. Triangle inequality for arbitrarily many terms and integrals.

For any finite set of numbers x1, x2, . . . , xn ∈ R we have

(Triangle Inequality) |x1 + · · ·+ xn| ≤ |x1|+ · · ·+ |xn|.

(Equality Condition) “=” ⇐⇒ all xi have the same sign.

This follows using induction on the inequality with two terms. By taking
a limit the result also holds for infinite sums and integrals.
If {xi} ⊂ R and the series is absolutely summable then∣∣∣∣∣

∞∑
i=1

xi

∣∣∣∣∣ ≤
∞∑
i=1

| xi |

If f is integrable on the interval [a, b] then |f | is integrable and∣∣∣∣∫ b

a
f (x) dx

∣∣∣∣ ≤ ∫ b

a
| f (x) | dx .



7. Cauchy Schwarz Inequality.

For any two vectors A,B ∈ Rn, the
Cauchy-Schwarz inequality amounts
to the fact the the orthogonal
projection of one vector A onto
another B is shorter than the
original vector: | prB(A)| ≤ |A|.

Figure 2: Euclidean Triangle.

Equality holds iff A and B are
parallel. If we write vectors
A = (a1, a2, . . . , an) and
B = (b1, b2, . . . , bn) then the
Euclidean dot product is

A • B = a1b1 + a2b2 + · · ·+ anbn.

We can express the length of the
projection using dot product

| prB(A) | = |A| | cos ∠(AB)|

= |A| |A • B|
|A| |B|

=
|A • B|
|B|

≤ |A|.



8. Cauchy Schwarz Inequality for infinite sums and integrals.

Let a1, a2, . . . , an and b1, b2, . . . , bn be arbitrary real numbers. Then the
Cauchy Schwarz Inequality says

|A • B| =

∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

a2
i

) 1
2
(

n∑
i=1

b2
i

) 1
2

= |A| |B|.

Equality holds iff there is c ∈ R such that A = cB or cA = B.
By taking limits we also obtain for square-summable series∣∣∣∣∣

∞∑
i=1

aibi

∣∣∣∣∣ ≤
( ∞∑

i=1

a2
i

) 1
2
( ∞∑

i=1

b2
i

) 1
2

and for square-integrable functions f , g on [a, b],∣∣∣∣∫ b

a
f (x)g(x) dx

∣∣∣∣ ≤ (∫ b

a
f 2(x) dx

) 1
2
(∫ b

a
g2(x) dx

) 1
2

We shall provide a proof of these later.



9. Arithmetic, Geometric and Harmonic Means.

Let a1, a2, . . . , an be arbitrary real numbers. Then the Arithmetic Mean
is the the expression

A(a) =
a1 + a2 + · · ·+ an

n
.

If all the numbers are positive, we define the Geometric and Harmonic
Means as

G(a) = n
√

a1 · · · an, H(a) =
n

1

a1
+ · · ·+ 1

an

.

After the Triangle and Schwartz inequalities, the next best known is
Arithmetic-Geometric Mean Inequality: for arbitrary positive numbers
which are not all equal,

h(a) < G(a) < A(a) (1)



10. Mean Value properties of Arithmetic, Geometric and Harmonic Means.

The three means are all averages. If m = min{a1, . . . , an} and
M = max{a1, . . . , an} are the smallest and largest of the numbers, then

m ≤ A(a) ≤ M, m ≤ G(a) ≤ M, m ≤ H(a) ≤ M.

(For G(a) and H(a) we assume m > 0.) These inequalities and
H(a) ≤ G(a) ≤ A(a) become equalities if and only if the ai ’s are equal.

The following properties are obvious from the definitions

1

G(a)
= G

(
1

a

)
,

1

H(a)
= A

(
1

a

)
,

A(a + b) = A(a) + A(b), G(ab) = G(a) G(b), log G(a) = A(log a)

where
1

a
means

(
1

a1
,

1

a2
, · · ·

)
etc.



11. Arithmetic, Geometric and Harmonic Means.

We only need to prove the AG Inequality because the HG inequality
follows from the AG inequality and properties of the means

H(a) =
1

A

(
1

a

) ≤ 1

G

(
1

a

) = G(a).

For two positive numbers, the AG inequality follows from the positivity of
the square

G2 = ab =

(
a + b

2

)2

−
(

a− b

2

)2

≤
(

a + b

2

)2

= A2

with strict inequality if a 6= b. This inequality says more: if equality holds
(A = G), then

0 = A2−G2 =

(
a− b

2

)2

so a = b.



12. Picture of the Arithemtic-Geometric Mean Inequality

Figure 3: Semicircle / Parabola Construction for A / G / H Means



13. Arithmetic, Geometric and Harmonic Means.

Cauchy’s proof of 1897 first considers the case n = 2m is a power of two.
By reordering if necessary, we may assume a 6= b. Then

abcd <

(
a + b

2

)2(c + d

2

)2

≤
(

a + b + c + d

4

)4

abcdefgh <

(
a + b + c + d

4

)4(e + f + g + h

4

)4

≤
(

a + b + c + d + e + f + g + h

8

)8

thus by induction,

a1a2 · · · a2m <

(
a1 + a2 + · · ·+ a2m

2m

)2m

proving the inequality if n = 2m. Note that “≤” holds without the
assumption that a 6= b. Also, if A = G then this argument also shows
that all ai must have been equal.



14. Arithmetic, Geometric and Harmonic Means.

For 2m−1 < n < 2m not a power of two he uses a padding trick: Put

K =
a1 + a2 + · · ·+ an

n
.

Then using the inequality with 2m terms (assuming a1 6= a2),

a1 · a2 · · · anK
2m−n <

(
a1 + a2 + · · ·+ an + (2m − n)K

2m

)2m

= K 2m

Thus

a1 · a2 · · · an < Kn =

(
a1 + a2 + · · ·+ an

n

)n

.

“≤” holds without the assumption that a1 6= a2. Also, if A = G then
again, all ai must have been equal.



15. Geometric Application of Arithmetic Geometric Mean Inequality.

Theorem

The area of a triangle with given perimeter 2p = a + b + c is maximum if
the sides a, b, c are equal.

Proof.

For a nondegenerate triangle, the sum of the lengths of any two sides is
strictly greater than the third, thus 2p = a + b + c > 2c and so on. So

p − a, p − b, p − c

are all positive. By Heron’s formula for area and the AG Inequality

A2 = p(p − a)(p − b)(p − c) ≤ p

(
p − a + p − b + p − c

3

)3

=
p4

27

with equality iff a = b = c .



16. Calculus Application of Arithmetic Geometric Mean Inequality

Theorem

If 0 < m < n are integers and the nonzero real number ξ > −m, then(
1 +

ξ

m

)m

<

(
1 +

ξ

n

)n

.

Proof.

Apply AG Inequality to m copies of 1 +
ξ

m
and n −m copies of 1.

(
1 +

ξ

m

)m
n

1
n−m

n ≤ m

n

(
1 +

ξ

m

)
+

n −m

n
1 = 1 +

ξ

n

which is a strict inequality if ξ 6= 0.



17. Arithmetic - Geometric Mean Inequality with Weights.

Suppose ai occurs pi times. Let q = p1 + · · ·+ qn. Then the AG
inequality is (

ap1
1 ap2

2 · · · apn
n

) 1
q ≤ p1a1 + p2a2 + · · · pnan

q

In other words for positive rational numbers wi =
pi

q
such that

w1 + · · ·+ wn = 1 we have

aw1
1 · · · awn

n ≤ w1a1 + · · ·+ wnan

For any real 0 < θi such that θ1 + · · ·+ θn = 1, by approximating with
rationals this gives the Arithmetic Geometric Inequliaty with Weights

aθ1
1 · · · a

θn
n ≤ θ1a1 + · · ·+ θnan.

By a separate argument we can show that equality occurs iff
a1 = a2 = · · · = an.



18. Application: Hölders Inequality for Sums.

Theorem (Hölder’s Inequality for Sums)

Let α, β, , . . . , λ be positive numbers such that α+ β + · · ·+ λ = 1. Let
aj , bj , . . . , lj be positive numbers for all j = 1, . . . , n. Then

∑n
j=1 aj

αbj
β · · · ljλ ≤

(∑n
j=1 aj

)α (∑n
j=1 bj

)β
· · ·
(∑n

j=1 lj

)λ

“<” holds unless all a, b,. . . ,l are proportional.

The proof follows from the AG Inequality with weights. Indeed,

Pn
j=1 aj

αbj
β ···lj λ

(
Pn

j=1 aj)
α
(

Pn
j=1 bj)

β ···(
Pn

j=1 lj)
λ =

∑n
j=1

(
ajPn

k=1 ak

)α ( bjPn
k=1 bk

)β
· · ·
(

ljPn
k=1 lk

)λ

≤
∑n

j=1

(
αajPn
k=1 ak

+
βbjPn
k=1 bk

+ · · ·+ λljPn
k=1 lk

)
= α+ β + · · ·+ λ = 1.



19. Convex Functions.

Figure 4: Convex Function y = ϕ(x)

Let I be an interval and ϕ : I → R be a function.

We say that ϕ is
convex in I if it
satisfies

ϕ(θ1x1 + θ2x2) ≤
θ1ϕ(x1) + θ2ϕ(x2)

for every x1 6= x2 ∈ I
and every 0 < θi such
that θ1 + θ2 = 1.
This condition says
that all of the interior
points of any chord of
the curve y = ϕ(x)
lie above the curve.



20. Convex Functions.

Theorem

Let ϕ : I → R be a convex function. Then ϕ is continuous at any a ∈ I ◦.

Proof.

Let b > 0 so that [a−b, a+b] ⊂ I . Convexity tells us that for 0 < h < 1,
since a− b < a− hb < a, a < a + hb < a + b and a− hb < a < a + hb,

ϕ(a− hb) ≤ ϕ(a) + h[ϕ(a− b)− ϕ(a)] (2)

ϕ(a + hb) ≤ ϕ(a) + h[ϕ(a + b)− ϕ(a)] (3)

ϕ(a) ≤ 1
2ϕ(a− hb) + 1

2ϕ(a + hb) (4)

Combining (2) and (3) with (4) yields

ϕ(a− hb) ≥ ϕ(a)− h[ϕ(a + b)− ϕ(a)] (5)

ϕ(a + hb) ≥ ϕ(a)− h[ϕ(a− b)− ϕ(a)] (6)

(2) and (5) say ϕ(a− hb) → ϕ(a) and (3) and (6) say ϕ(a + hb) → ϕ(a)
as h → 0+. Hence ϕ is continuous at a.



21. Convex Functions.

Figure 5: Convex Function Lies Between Secants so is Continuous at a.



22. Convex Functions.

Theorem (Jensen’s Inequality)

Suppose ϕ : I → R is convex, x1, . . . , xn ∈ I arbitrary points and
θ1, . . . , θn ∈ (0, 1) arbitrary weights. Then

ϕ(θ1x1 + · · ·+ θnxn) ≤ θ1ϕ(x1) + · · ·+ θnϕ(xn). (7)

Proof.

Argue by induction. The base case n = 2 is the definition of convexity.
Assume that (7) is true for n. Then using n = 2 case and the induction
hypothesis we have ϕ(θ1x1 + θ2x2 + · · ·+ θn+1xn+1) =

= ϕ
(
θ1x1 + (1− θ1)

[
θ2

(1−θ1)
x2 + · · ·+ θn+1

(1−θ1)
xn+1

])
≤ θ1ϕ(x1) + (1− θ1)ϕ

(
θ2

(1−θ1)
x2 + · · ·+ θn+1

(1−θ1)
xn+1

)
≤ θ1ϕ(x1) + (1− θ1)

[
θ2

(1−θ1)
ϕ(x2) + · · ·+ θn+1

(1−θ1)
ϕ(xn+1)

]
= θ1ϕ(x1) + · · ·+ θn+1ϕ(xn+1).



23. Case of Equality in Jensen’s Inequlity.

Theorem (Equality in Jensen’s Inequality)

Suppose ϕ : I → R is convex, x1, . . . , xn ∈ I arbitrary points and
θ1, . . . , θn ∈ (0, 1) arbitrary weights. If equality holds

ϕ(θ1x1 + · · ·+ θnxn) = θ1ϕ(x1) + · · ·+ θnϕ(xn),

then either

all xi are equal or

ϕ(x) is a linear function in an interval including all of the xi ’s.

ϕ : I → R is strictly convex if ϕ(θ1x1 + θ2x2) < θ1ϕ(x1) + θ2ϕ(x2) for
every x1 6= x2 ∈ I and every 0 < θi such that θ1 + θ2 = 1. If ϕ is strictly
convex, then it cannot equal a linear function on any nontrivial interval.

If ϕ ∈ C2((α, β)), then ϕ is convex iff ϕ′′ ≥ 0 in (α, β). If ϕ′′ > 0 in
(α, β) then ϕ is strictly convex.



24. Probabilistic Interpretation of Jensen’s Inequality.

Suppose X is a discrete random variable that takes values in the set

X ∈ D = {x1, x2, . . . , xn}

with probabilities P(X = xi ) = θi , where θi > 0 with
∑

i θi = 1. Then
the expectation of X is

E(X ) =
n∑

i=1

xiθi

The expectation of a function ϕ : D → R is

E(ϕ(X )) =
n∑

i=1

ϕ(xi )θi

Theorem (Jensen’s Inequality)

Suppose ϕ : I → R is convex and X a random variable taking values in
D = {x1, . . . , xn} ⊂ I with probabilities P(X = xi ) = θi then

ϕ(E(X )) ≤ E(ϕ(X )).



25. Picture of Jensen’s Inequality.

Figure 6: Jensen’s Inequality ϕ(E(x)) ≤ E(ϕ(x))

The center of mass of
all boundary points

E
(
x , ϕ(x)

)
=
(
E(x),E(ϕ(x))

)
is in the convex hull C
of the points on the
curve (xi , ϕ(xi )),
which is above the
mean point on the
graph(

E(x), ϕ(E(x))
)
.



26. Simple Application of Jensen’s Inequality: Hölder’s Inequality.

Let ϕ(t) = tk for k > 1 on I = (0,∞). Then ϕ′′(t) = k(k − 1)tk−2 > 0
so ϕ is convex. Applying Jensen’s Inequality yields for positive xi and pi

so weights are θi = pi/(
∑

pj),(∑
xipi∑
pj

)k

≤
∑

xk
i pi∑
pj

.

with equality if and only if all xi ’s are equal.

This can be given a more symmetric form. If ai and bi are any nonzero
numbers, then by putting xθ = |a| |b| and xkθ = |a|k ,
(or x = |a| |b|1/(1−k) and θ = |b|k/(k−1)) then

∑
|ai | |bi | ≤

(∑
|ai |ki

) 1
k
(∑

|bi |
k

k−1

) k−1
k
.



27. Hölder’s Inequality.

It is convenient to call k ′ = k
k−1 the conjugate exponent. It satisfies

1

k
+

1

k ′
= 1.

Because |
∑

aibi | ≤
∑
|ai | |bi | by the triangle inequality, the previous

inequality, called Hölder’s Inequality, becomes∣∣∣∑ aibi

∣∣∣ ≤ (∑ |ai |k
) 1

k
(∑

|bi |k
′
) 1

k′
.

If equality holds then all aibi are positive or all negative for the equality
to hold in the triangle inequality so all ai and bi have the same sign or
opposite signs. Also there is a constant c so that c = xi all i for Jensen’s
Inequality to hold, hence |ai |k = ck |bi |k

′
for all i (i.e., are proportional.)

The k = k ′ = 2 case is called the Cauchy-Schwarz Inequality.(∑
aibi

)2
≤
(∑

a2
i

)(∑
b2
i

)
.



28. Jensen’s Inequality Implies the AG Inequality.

Let ϕ(t) = − log t on I = (0,∞). Then ϕ′′(t) = t−2 > 0 so ϕ is strictly
convex. Applying Jensen’s Inequality yields for positive xi and weights θi
such that

∑
θi = 1, ∑

log (xi ) θi ≤ log
(∑

xiθi

)
with equality if and only if all xi ’s are equal. Taking exponential

G(x) =
∏

xθi
i = exp

[∑
log
(
xθi
i

)]
≤
∑

xiθi = A(x)



29. Circle Application of Jensen’s Inequality.

Figure 7: Polygon Whose Vertices are Center C and
Points Ai on a Circle

Suppose C is the
center of a circle and
A0,A1, . . . ,An,C be
a polygon, whose
vertices except for C
lie in order on a
circle. C , A0 and An

are fixed and
A1, . . . ,An−1 vary.
Show: the area and
perimeter of the
polygon are greatest
when sides are equal
A0A1 = A1A2 =
· · · = An−1An



30. Circle Application of Jensen’s Inequality. -

Let αi denote the angle Ai−1CAi . Note 0 < αi < π since the polygon
surrounds C . Let r be the radius and α =

∑
αi the total angle. The the

area of the sector is 1
2 r2 sinαi and the distance Ai−1Ai is 2r sin(αi/2).

ϕ(t) = − sin t and ψ(t) = −2 sin(t/2) have ϕ′′ = sin t > 0 and
ψ′′ = 1

2 sin(t/2) > 0, resp., so ϕ and ψ are convex on (0, π).

By Jensen’s Inequality and reversing signs, both inequalities hold

A =
r2

2n

∑
sinαi ≤

r2

2
sin
(α

n

)
L =

2r

n

∑
sin
(αi

2

)
≤ 2r sin

( α
2n

)
with equalities if and only if all αi are equal.



31. Another characterization of Convex Functions.

Let ϕ : I → R. A support function for ϕ at x1 ∈ I ia a linear function
through the point with slope λ(x1) which is is below ϕ :

ϕ(x) ≥ ϕ(x1) + λ(x1)(x − x1) for all x ∈ I

We may take λ(x1) = ϕ′(x1) if ϕ is differentiable at x1.

Theorem

The continuous function ϕ : I → R is convex if and only if there is a
support function for ϕ at every point x1 ∈ I .



32. Jensen’s Inequality Revisited.

Suppose ϕ : I → R is convex, x1, . . . , xn ∈ I arbitrary points and
θ1, . . . , θn ∈ (0, 1) arbitrary weights. The arithmetic mean

x̄ =
∑

xiθi

is a point of I , thus the support function satisfies for all x ∈ I ,

ϕ(x̄) + λ(x̄)(x − x̄) ≤ ϕ(x).

Putting x = xi , multiplying by θi and summing gives

ϕ(E(X )) + 0 =
∑

[ϕ(x̄)θi + λ(x̄)(xi − x̄)θi )] ≤
∑

ϕ(xi )θi = E(ϕ(X ))



33. Integral Form of Jensen’s Inequality.

Let f (x) be a probability density function for a random variable X that
takes values in I . So f is integrable, f (x) ≥ 0 and

∫
I f (x) dx = 1. The

expectation of X is

x̄ = E(X ) =

∫
I
x f (x) dx .

If ϕ : I → R is convex, then as before, for all x ∈ I ,

ϕ(x̄) + λ(x̄)(x − x̄) ≤ ϕ(x).

Integrating gives the Integral form of Jensen’s Inequality

ϕ(E(X )) =

∫
I

[ϕ(x̄) + λ(x̄)(x − x̄)] f (x) dx ≤
∫
I

ϕ(xi )f (x) dx = E(ϕ(X ))

Equality holds for strictly convex ϕ iff f (x) = C is (essentially) constant.

This may also be achieved by approximating the Riemann Integral by
finite sums, using the finite Jensen’s inequality and passing to the limit.



34. Hölder Inequality for Integrals.

In the Riemann Theory of integration, a bounded function f : I → R on
a bounded interval is called null if f = 0 at all points of continuity of f .
If f − g is null, we say f and g are equivalent and write f ≡ g . So f ≥ 0
and

∫
f dx = 0 is a necessary and sufficient condition for f ≡ 0.

Put ϕ(t) = − log t in Jensen’s Inequality and argue as before.

Theorem (Hölder’s Theorem for Integrals)

Let k > 1 and 1
k + 1

k ′ = 1. Let f k , gk ′ : I → R be integrable. Then fg is
integrable and ∫

fg dx ≤
(∫

f k dx
) 1

k

(∫
gk ′ dx

) 1
k′

Equality holds if and only if there are constants A, B, not both zero,
such that Af k ≡ Bgk ′ .

If one of the functions is equivalent to zero, then equality condition holds.



35. Circuit Application of Hölder’s Inequality.

Figure 8: A Closed Star-shaped Plane
Curve C and Pole P

C carries an electric current j0 and
induces a magnetic field B at P.

The Biot Savart law gives the force
exerted on magnetic pole of strength
µ0 at P in the plane of and interior
to C . Fix the area A enclosed by C .
Show: B is minimum when C is a
circle and P is at its center. Letting
X (θ) be the position vector and r
the distance from P to X , in polar
coordinates X − P = r(cos θ, sin θ).
If j0dX is the current density, then
the infinitesimal force at P is

dB =
j0µ0

4πr3
(X − P)× dX

=
j0µ0

4πr2
(cos θ, sin θ)

×
[
r ′(cos θ, sin θ) + r(− sin θ, cos θ)

]
dθ

=
j0µ0

4πr
dθ



36. Circuit Application of Hölder’s Inequality. -

Integrating 0 ≤ θ < 2π in polar coordinates, using Hölder’s Inequality,

2π =

∫
dθ

=

∫ (
1

r

) 2
3 (

r2
) 1

3 dθ

≤
(∫

dθ

r

) 2
3
(∫

r2 dθ

) 1
3

=

(
4πB

j0µ0

) 2
3

(2A)
1
3

with equality if and only if r is constant.



37. Minkowski’s Inequality.

Theorem (Minkowski’s Inequality for Integrals)

Let gk , hk : I → R be integrable, f : I → R a probability density and
k > 1. Then[∫

|g + h|k f dx

] 1
k

≤
[∫

|g |k f dx

] 1
k

+

[∫
|h|k f dx

] 1
k

Equality holds if and only if there are constants A, B, not both zero,
such that Ag ≡ Bh.

WLOG f , g ≥ 0 and let s = g + h. Using k ′ = k
k−1 , and Hölder’s Ineq.∫

sk f dx =

∫
gsk−1f dx +

∫
hsk−1f dx

=

∫ [
gf

1
k

] [
sf

1
k

]k−1
dx +

∫ [
hf

1
k

] [
sf

1
k

]k−1
ds

≤
[∫

gk f

] 1
k
[∫

sk f dx

] 1
k′

+

[∫
hk f dx

] 1
k
[∫

sk f dx

] 1
k′

.



38. Application of Minkowski’s Inequalty.

A metric space (X , d) is a set X and a distance function
d : X × X → [0,∞) such that

d is symmetric: d(x , y) = d(y , x) for all x , y ∈ X .

d is positive definite: d(x , y) ≥ 0 for all x , y ∈ X and d(x , y) = 0 if
and only if x = y .

d satisfies the Triangle Inequality: d(x , z) ≤ d(x , y) + d(y , z) for all
x , y , z ∈ X .

If X = Rn, the standard metric space struture is given by the Euclidean
distance function

dE (x , y) =

[
n∑

k=1

(xk − yk)2

] 1
2

.



39. Application of Minkowski’s Inequalty. -

Minkowski’s Inequality says that there are infinitely many distance
functions possible for X = Rn, namely for p > 1 consider

dp(x , y) =

[
n∑

k=1

(xk − yk)p

] 1
p

.

Thus dE (x , y) = d2(x , y). Evidently dp(x , y) is symmetric and positive
definite. Minkowski’s Inequality for sums says that dp(x , y) satisfies the
triangle inequality:

dp(x , z) ≤ dp(x , y) + dp(y , z) for all x , y , z ∈ Rn.



40. Weighted vs. Unweighted Sums.

Theorem

Let θ1, . . . , θn be positive weights such that
∑n

k=1 θk = 1. Let a1, . . . , an

be positive. Define the weighted and unweighted means for r > 0

Mr(a) = (
∑n

k=1 θkar
k)

1
r , Sr(a) = (

∑n
k=1 ar

k)
1
r

Then if 0 < r < s,
(1) Mr(a) < Ms(a) unless all ak are equal and
(2) Ss(a) > Sr(a) unless n = 1.

To see (1), let r = sα where 0 < α < 1. Let uk = θkas
k and vk = θk .

Thus θkasα
k = (θkas

k)α(θk)1−α = uα
k v1−α

k . By Hölder’s Inequality,

Mr(a) =
∑n

k=1 uα
k v1−α

k ≤ (
∑n

k=1 uk)α (
∑n

k=1 vk)1−α = (Ms(a))
α · 1.



41. Weighted vs. Unweighted Sums. -

To see (2) we’ll exploit the homogeneity of the inequality to simplify the
proof.

Note that Ss(a) is homogeneous in a, namely for c ≥ 0,
Ss(ca) = c Ss(a). Let c = Sr(a), and define ãk = ak/c . Then

Sr(ã) = (
∑n

k=1 ãr
k)

1
r = 1.

It follows if n > 1 that ãk < 1 for every k, which means that ãs
k < ãr

k .
Hence ∑n

k=1 ãs
k <

∑n
k=1 ãr

k = 1.

Finally

Ss(a) = c (
∑n

k=1 ãs
k)

1
s < c · 1 = Sr(a).



Thanks!


