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2. USAC Lecture on Fractals

The URL for these Beamer Slides: “Fractals: self similar fractional
dimensional sets”

http://www.math.utah.edu/~treiberg/FractalSlides.pdf
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5. Fractal. Cantor Set.

A fractal is a set with fractional dimension. A fractal need not be
self-similar. In this lecture we construct self-similar sets of fractional
dimension. The most basic fractal is the Middle Thirds Cantor Set. One
starts from an interval I1 = [0, 1] and at each successive stage, removes
the middle third of the intervals remaining in the set.

I2 =
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∪
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∪
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]
∪
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, 1

]
· · ·

Then the Cantor Set is the limit C =
⋂∞

n=1 In.



6. Picture of Cantor Sets

Figure: The sequence {In} approximating the middle thirds Cantor Set.



7. “Butterfly” Attractor of Lorenz Equations.

“Butterfly” ODE limit set is a non self-similar fractal 1 < dimH(A) < 2



8. Cantor Set as the Attractor of an Iterated Function System

The Cantor Set may be constructed using Iterated Function Systems.
The IFS is given by two maps on the line, F = {`, r}, where

`(x) =
x

3
; r(x) =

x + 2

3
.

` and r make two shrunken copies of the original the interval and located
at the left and right ends. Define the induced union map taking compact
sets A ⊂ R to new compact sets consisting of both shrunken copies

F(A) = `(A) ∪ r(A)

where `(A) = {`(x) : x ∈ A}. Consider the dynamical system of iterating
the maps. We get the Cantor Set as its its attractor (limit)

I2 = F(I1), I3 = F(I2), . . . , C = lim
n→∞

F◦n(I1)

where we define F ◦ F(A) = F(F(A)) and

F◦n(A) =

n times︷ ︸︸ ︷
F ◦ F ◦ · · · ◦ F(A)



9. Metric Spaces

Why does the sequence of sets converge? Let us put the structure on the
space of compact sets and do a little analysis. Recall first a fimiliar.

The distance function d on Euclidean Space X = En is

d(x , y) = ‖x − y‖ =

√√√√ n∑
i=1

(xi − yi )2.

Euclidean Space has the structure of a metric space, namely, for all
x , y , z ∈ X we have

d(x , x) = 0, d(x , y) = d(y , x),

d(x , z) ≤ d(x , y) + d(y , z) triangle inequality
(which implies d(x , x) ≥ 0

d(x , y) = 0 implies x = y .



10. Complete Metric Spaces

{xi} ⊂ En is a Cauchy Sequence if for every ε > 0 there is an N such that

d(xi , xj) < ε whenever i , j ≥ N.

Euclidean Space is a complete metric space because all Cauchy Sequences
converge. Namely, if {xi} is a Cauchy Sequence, then there is z ∈ En

such that xi → z as i →∞, i.e., for all ε > 0, there is N > 0 such that

d(xi , z) < ε whenever i > N.

A set K is compact if every sequence {xi} ⊂ K has a subsequence that
converges to a point of K . In Euclidean Space, K ∈ En is compact if and
only if it is closed and bounded (Heine Borel Theorem).

Surprisingly, the space K(En) of all compact sets En and can be endowed
with the structure of a complete metric space under the Hausdorff
Metric.



11. ε-Collar of a Set

Let K(En) denote the nonempty compact subsets. For any A ∈ K(En)
and ε > 0 define the set of points within ε of A,

Aε = {x ∈ En : d(x , y) ≤ ε for some y ∈ En}

called the ε-collar of A. The distance of the point x to A is

d(x ,A) = inf
y∈A

d(x , y)

It is zero if x ∈ A. The ε-collar may aslo be given by

Aε = {x ∈ En : d(x ,A) ≤ ε}

The infimum is achieved: since A is compact, there is y ∈ A so that

d(x , y) = d(x ,A).



12. Hausdorff Distance

Given compact sets A,B ∈ K(En), if we let

d(A,B) = max
x∈A

d(x ,B).

d(A,B) ≤ ε implies that A ⊂ Bε.

BUT d(A,B) MAY NOT EQUAL d(B,A) so it is not a metric. e.g.,
A = {x ∈ E2 : |x | ≤ 1}, B = {(2, 0)} then d(B,A) = 1 so B ⊂ A1 but
d(A,B) = 3 and A 6⊂ B1.

Hausdorff introduced

h(A,B) = max{d(A,B), d(B,A)} = inf{ε : A ⊂ Bε and B ⊂ Aε}

Theorem (Completeness of K (En))

K (En) with Hausdorff Distance h is a complete metric space.
Furthermore, h satisfies for all A,B,C ,D ∈ K(X )

h(A ∪ B,C ∪ D) ≤ max{h(A,C ), h(B,D)}



13. Proof of the Completeness Theorem for (K (En), h)

Proof. Symmetry (h(A,B) = h(B,A)) and positive definiteness
(h(A,B) ≥ 0 with h(A,B) = 0 =⇒ A = B) are obvious. To prove the
triangle inequality it suffices to show

d(A,B) ≤ d(A,C ) + d(C ,B).

This implies the triangle inequality for h:

h(A,B) = max{d(A,B), d(B,A)}
≤ max{d(A,C ) + d(C ,B), d(B,C ) + d(C ,A)}
≤ max{h(A,C ) + h(C ,B), h(B,C ) + h(C ,A)}
= h(A,C ) + h(C ,B).



14. Proof of the Completeness Theorem-

Now to show d(A,B) ≤ d(A,C ) + d(C ,B),

d(a,B) = min
b∈B

d(a, b)

≤ min
c∈C

min
b∈B

(d(a, c) + d(c , b))

≤ min
c∈C

d(a, c) + min
c∈C

min
b∈B

d(c , b)

≤ d(a,C ) + min
c∈C

d(c ,B)

≤ d(a,C ) + min
c∈C

d(C ,B)

≤ d(a,C ) + d(C ,B)

Maximizing the right side over a ∈ A gives

d(a,B) ≤ d(A,C ) + d(C ,B)

Maximizing over a ∈ A,

d(A,B) ≤ d(A,C ) + d(C ,B).



15. Proof of the Inequality- -

The inequality follows from the set inclusion. Let r = h(A,C ),
s = h(B,D), and t = max{r , s}. Then A ⊂ Cr , Cr ⊂ A, B ⊂ Ds and
D ⊂ Bs so

A ⊂ Cr ∪ Ds ⊂ Ct ∪ Dt = (C ∪ D)t , likewise B ⊂ (C ∪ D)t

thus A ∪ B ⊂ (C ∪ D)t . Similarly C ∪ D ⊂ (A ∪ B)t . Hence

h(A ∪ B,C ∪ D) ≤ t = max{h(A,C ), h(B,D)}.

To see Ct ∪Dt = (C ∪D)t , x ∈ (C ∪D)t iff x = e + v where e ∈ C ∪D
and |v | ≤ t iff x ∈ Ct or x ∈ Dt .



16. Proof of the Completeness Theorem- -

Sketch of completeness argument: suppose An is a Cauchy Sequence in
(K, h). Define A∞ to be the set of limit points of sequences {xn} where
xn ∈ An. Thus x ∈ A∞ if and only if there is a subsequence of this type
such that xkj → x as j →∞. Since {An} forms a Cauchy Sequence, for
every ε > 0 there is an R(ε) so that h(An,Am) < ε whenever
m, n ≥ R(ε). In particular, Am ⊂ (An)ε for all m ≥ n ≥ R(ε) so any
sequence xm ∈ Am is bounded and thus has a limit point, showing A∞ is
nonempty. Limits satisfy A∞ ⊂ (An)ε for all n ≥ R(ε), hence A∞ is
bounded. A convergent sequence of limit points is a limit point, so A∞ is
closed, thus A∞ is compact, thus in K.
To show that also An ⊂ (A∞)ε whenever n ≥ R(ε), pick zn ∈ An. For
k ≥ R(ε), h(An,Ak) < ε, so there is xk ∈ Ak so d(xk , zn) < ε. Let
z ∈ A∞ be a limit point of {xk}. For its converging subsequence
d(z , zm) = limj→∞ d(xkj , zm) ≤ ε so zm ∈ (A∞)ε.
Putting the containments together shows h(Am,A∞) ≤ ε for all
m ≥ R(ε), thus Am converges to A∞ in the Hausdorff metric.



17. Contraction .

A mapping f : En → En is a λ-contraction if there is a constant
0 ≤ λ < 1 such that

d(f (x), f (y)) ≤ λd(x , y), for all x , y ∈ En.

Lemma

If f : En → En is a λ-contraction, then the induced map on K(En) is a
contraction in the Hausdorff Metric with the same constant

h(f (A), f (B)) ≤ λh(A,B), for all A,B ∈ K(En) .

Proof. Choose A,B ∈ K(En).

d(f (A), f (B)) = max
a∈A

d(f (a), f (B)) ≤ λmax
a∈A

d(a,B) = λd(A,B).

Similarly, d(f (B), f (A)) ≤ λd(B,A). Combining,

h(f (A), f (B)) = max{d(f (A), f (B)), d(f (B), f (A))}
≤ λmax{d(A,B), d(B,A)} = λh(A,B).



18. Hutchnson’s Lemma

Lemma (Hutchinson 1981)

Let f1, . . . , fk : En → En be an IFS of contractions with constants λk .
Then the induced union map on K(En) given for A ∈ K(En) by

F(A) = f1(A) ∪ f2(A) ∪ · · · ∪ fk(A)

is a contraction with the constant λ = max{λ1, . . . , λk}.

Proof. Choose A,B ∈ K(En). Since a point is closer to a union of sets
than to any one set in the union,

d(F(A),F(B)) = d
(
∪ki=1fi (A),∪kj=1fj(B)

)
= max

1≤i≤k

{
d(fi (A),∪kj=1fj(B))

}
≤ max

1≤i≤k
{d(fi (A), fi (B))} ≤ max

1≤i≤k
{λid(A,B))} ≤ λd(A,B).

Similarly, d(F(B),F(A)) ≤ λd(B,A). Combining as before
h(F(A),F(B)) ≤ λh(A,B).



19. Contraction Mapping Theorem

One of the ten basic facts every math major must know.

Theorem (Contraction Mapping)

Let (X , d) be a complete metric space and f : X → X be a contraction.
Then there is a unique fixed point x∞ ∈ X such that f (x∞) = x∞.

In fact, x∞ may be found by iteration. Starting from any x0 ∈ X , define
the sequence x1 = f (x0), x2 = f (x1), . . . , xn+1 = f (xn), . . . . Then one
shows that the sequence converges to a unique point

x∞ = lim
n→∞

xn.

Applying this to iterated function systems, if F : K(En)→ K(En) is a
contraction then there is a unique invariant set A∞ ∈ K(En) such that
F(A∞) = A∞. It is found as the unique attractor for the dynamical
system F : K(En)→ K(En). For any nonempty compact set S ,

A∞ = lim
n→∞

F◦n(S).



20. Cantor Set with Unequal Intervals

Figure: Cantor Set with Unequal Intervals

This Cantor set is obtained
from IFS F = {f1, f2} on R
where

f1(x) = .4x ,

f2(x) = .5x + .5

Each fi ’s are contractions
with λ1 = .4 and λ2 = .5.



21. Sierpinski Gasket

Figure: Sierpinski Gasket

The Sierpinski Gasket is
obtained from IFS
F = {f1, f2, f3} where

f1(x) =

(
1
2 0
0 1

2

)(
x1
x2

)
,

f2(x) =

(
1
2 0
0 1

2

)(
x1
x2

)
+

(
1
2
0

)
,

f3(x) =

(
1
2 0
0 1

2

)(
x1
x2

)
+

(
0
1
2

)
.

Each fi is a contraction with
λ = 1

2 .



22. Sierpinski Gasket 0.



23. Sierpinski Gasket 1.



24. Sierpinski Gasket 2.



25. Sierpinski Gasket 3.



26. Sierpinski Gasket 4.



27. Sierpinski Gasket 5.



28. Sierpinski Gasket 6.



29. Sierpinski Gasket 7.



30. von Koch Snowflake

Figure: One of Three Sides of the Snowflake

Helge von Koch (1870–1924) was a
Swedish mathematician who studied
systems of infinitely many linear equations.
He used pictures and geometric language in
the 1904 paper to construct his curve as an
example of a non-differentiable curve.
Weierstrass’s 1872 description of such a
curve used only formulas.

The von Koch Curve is
obtained from IFS
F = {f1, f2, f3, f4} where in
complex notation z = x + iy ,

f1(z) =
1

3
z ,

f2(z) =
eπi/3

3
z +

1

3

f3(z) =
e−πi/3

3
z +

eπi/3 + 1

3

f4(z) =
1

3
z +

2

3
.

Each contraction has λ = 1
3 .



31. von Koch Curve 1.



32. von Koch Curve 2.



33. von Koch Curve 3.



34. von Koch Curve 4.



35. von Koch Curve 5.



36. Barnsley’s Ferns

Images of Big Rectangle under F = {f1, f2, f3}.



37. Barnsley Fern F◦2



38. Barnsley Fern F◦4



39. Minkowski Curve

Figure: Minkowski Curve

The downward line in the middle consists of
two segments of length 1

4 .

The Minkowski Curve is
obtained from IFS
F = {f1, . . . , f8} where

f1(z) = 1
4z ,

f2(z) = i
4z + 1

4

f3(z) = 1
4z + 1+i

4

f4(z) = − i
4z + 2+i

4

f5(z) = − i
4z + 1

2

f6(z) = 1
4z + 2−i

4

f7(z) = i
4z + 3−i

4

f8(z) = i
4z + 3

4

All λi = 1
4 .



40. Minkowski Curve 1.



41. Minkowski Curve 2.



42. Minkowski Curve 3.



43. Minkowski Curve 4.



44. Minkowski Curve 5.



45. Peano Curve

Figure: Peano Curve

This is called a space filling curve. Every
point of the diamond is on the curve. There
are many self-intersection points.

The Peano Curve is obtained
from IFS F = {f1, . . . , f9}
where

f1(z) = 1
3z ,

f2(z) = i
3z + 1

3

f3(z) = 1
3z + 1+i

3

f4(z) = − i
3z + 2+i

3

f5(z) = −1
3z + 2

3

f6(z) = − i
3z + 1

3

f7(z) = 1
3z + 1−i

3

f8(z) = i
3z + 2−i

3

f9(z) = 1
3z + 2

3

The contractions all have
λi = 1

3 .



46. Peano Curve 1.



47. Peano Curve 2.



48. Peano Curve 3.



49. Peano Curve 4.



50. Peano Curve 5.



51. Levy’s Dragons

Figure: On of Many Levy’s Dragons

Paul Lévy (1886–1971) was first to exploit
self-similarity. His research focussed on
probability theory.

Levy’s Dragon Curve is
obtained from IFS
F = {f1, f2} where

f1(z) = −1 + i

2
z +

1 + i

2

f2(z) =
1− i

2
z +

1 + i

2

Both contractions have
λi = 1√

2
. Note that f1 sends

the interval in the southwest
direction to get the dragon
to “snake.”



52. Levy’s Dragon 1.



53. Levy’s Dragon 2.



54. Levy’s Dragon 3.



55. Levy’s Dragon 4.



56. Levy’s Dragon 5.



57. Levy’s Dragon 6.



58. Levy’s Dragon 7.



59. Levy’s Dragon 8.



60. Levy’s Dragon 9.



61. Levy’s Dragon 10.



62. Levy’s Dragon 11.



63. Levy’s Dragon 12.



64. Levy’s Dragon 13.



65. Levy’s Dragon 14.



66. Levy’s Dragon 15.



67. Self Similar Sets

A similarity transformation in Euclidean space is a linear map for x ∈ Rd

T (x) = λRx + b

where λ ≥ 0 is a scaling factor, R is a rotation matrix and b is a
translation vector. Reflections are also similarity transformations. In two
dimensions, this is written in complex notation z = x + iy by

T (z) = az + b, (or T (z) = az̄ + b)

where a = λe iθ ∈ C, λ = |a| is the norm and θ is the argument of a. T
is thus dilation by λ followed by rotation by angle θ and then by
translation of b ∈ C.

A set A ⊂ Rd is self-similar if there is a similarity transformation T that
identifies the a subset of S ⊂ A with itself T (S) = A.



68. Self-Similarity of the Snowflake Curve

Figure: The von Koch Curve is
self-similar. e.g., the cyan subset is
similar to the whole curve.

The von Koch curve A is the fixed
set of the IFS F = {f1, f2, f3, f4},

A = F(A).

The cyan subset is S = f2(A), where

f1(z) = 1
3z ,

f2(z) = e
πi
3

3 z + 1
3

f3(z) = e−
πi
3

3 z + e
πi
3 +1
3

f4(z) = 1
3z + 2

3 .

are all invertible similarity
transformations. In particular

A = f −12 (S)

where the inverse is a similarity
transformation

z = f −12 (w) = 3e−
πi
3 w − e−

πi
3



69. Hausdorff Measure of a Set

The d-volume of a closed ball Br (x) = {y ∈ Rd : |x − y | ≤ r} is cd r
d ,

whose rate of growth is the dimension.

To measure the s-dimensional volume of A ⊂ Rn, lets take an ε-cover
U(ε) = {Bi} of balls, namely Bi = Bri (xi ) with ri ≤ ε such that
A ⊂

⋃
i Bi and add their s-volumes. Then minimize over all such possible

covers
m(A, s, ε) = inf

U(ε)

∑
r si

Since there are fewer sets in U(ε) as ε decreases, the function m(A, s, ε)
increases as ε decreases. So the refinement limit exists and we obtain the
s-dimensional Hausdorff outer measure

m(A, s) = lim
ε→0+

m(A, s, ε)

For compact sets, this agrees with the Hausdorff measure.

Observe is that if T is a similarity transformation with factor λ > 0 then

m(T (A), s) = λsm(A, s)



70. Facts About the s-Dimensional Hausdorff Outer Measure

Lemma

The set function A 7→ m(A, s) has the following properties

1 m(∅, s) = 0 for all s > 0 where ∅ is the empty set.

2 m(A1, s) ≤ m(A2, s) whenever A1 ⊂ A2.

3 (Subadditivity) For any finite or countable collection of subsets Ai ,

m

(⋃
i

Ai , s

)
≤
∑
i

m(Ai , s)

As a function of s, the function m(A, s) is infinite for small values of s
and zero for large values, Only for one s can m(A, s) be something else.

Definition (Hausdorff Dimension)

dimH(A) = sup{s ∈ [0,∞) : m(A, s) =∞}
= inf{s ∈ [0,∞) : m(A, s) = 0}



71. Hausdorff Dimension

Theorem

If s ≥ 0 is such that m(A, s) <∞ then m(A, t) = 0 for every t > s.

Proof.

m(A, t, ε) = inf
U(ε)

∑
i

r ti = inf
U(ε)

∑
i

r t−si r si

≤ inf
U(ε)

∑
i

εt−sr si = εt−sm(A, s, ε).

Since t − s > 0 we have εt−s → 0 as ε→ 0+. But m(A, s, ε) ≤ m(A, s)
because it is decreasing in ε, so

lim
ε→0+

m(A, t, ε) = 0.

Corollary

If s ≥ 0 is such that m(A, s) > 0 then m(A, t) =∞ for every t < s.



72. Hausdorff Dimension of the Middle Thirds Cantor Set

We find the dimension by covering with balls.

The IFS for the Cantor set is F = {f1, f2}. If I = [0, 1] then the k-th
approximation to C is

F◦k(I )

which consists of 2k intervals which are balls of radius 1
2·3k . If 1

2·3k ≤ ε
this set of balls belongs to U(ε) and for s > 0,

m(C , ε) ≤
∑

r si = 2k
(

1

2 · 3k

)s

=
1

2s

(
2

3s

)k

This quantity tends to zero as ε→ 0 (same as k →∞) if 2 < 3s or
s > ln 2

ln 3 . So dimH(C ) ≤ ln 2
ln 3
∼= .63.

Show dimH(C ) is larger than ln 2
ln 3 is harder because we need to prove an

inequality that holds for ALL covers U(ε), but it is true.



73. Similarity Argument for Dimension of the Middle Thirds Cantor Set

We exploit the self-similarity to compute dimension of the Cantor Set.

Let’s assume s = dimH C and 0 < m(C , s) <∞. Because the IFS for the
Cantor set consists of similarity transformations F = {f1, f2}, with
λi = 1

3 , the set is self-similar and C = f1(C ) ∪ f2(C ). By subadditivity
and scaling for similarity transformations,

m(C , s) = m(f1(C ) ∪ f2(C ), s)

≤ m(f1(C ), s) + m(f2(C ), s)

= λsm(C , s) + λsm(C , s)

or

1 ≤ 2

(
1

3

)s

.

Solving for s,
0 = ln 1 ≤ ln 2− s ln 3

so

s ≤ ln 2

ln 3
≈ .63.



74. Dimension for IFS of Similarity Transformations

If A is the attractor of an IFS F = {f1, . . . , fk} of similarity
transformations with 0 < λi < 1 and if the fi (A) are disjoint, then A is
self similar. Assuming that s = dimH(A) and 0 < m(A, s) <∞

m(A, s) = m

(
k⋃

i=1

fi (C )

)
≤

k∑
i=1

m(fi (C )) =
k∑

i=1

λsim(A, s)

which implies
1 = λs1 + · · ·+ λsk = j(s)

Because the right side is a strictly decreasing function with j(0) = k > 1
and lims→∞ j(s) = 0, there is a unique solution 1 = j(s), called the
similarity dimension, which is an upper bound for dimH(A).

Because iterates may overlap, this may not be equal to dimH(S).
Moran’s Theorem gives conditions so the similarity dimension equals the
Hausdorff dimension.



75. Moran’s Theorem

Theorem (P. Moran, 1945)

Suppose that A ⊂ Rd is a compact attractor of an IFS F = {f1, . . . , fk}
of similarity transformations with 0 < λi < 1. Assume that either fj(A)
are disjoint for j = 1, . . . , k or that A obtained in the following way:
Suppose Ω1 is an open bounded set and Ωj

2 = fj(Ω1) be disjoint open

sets for j = 1, . . . , k contained in Ω1. Similarly let Ωj`
2 = f`(Ωj

1) for
` = 1, . . . , k be disjont in all j and so on. Suppose A is the intersection of

Ω1, ∪jΩi
2, ∪j`Ωj`

3 , . . .

Then dimH(A) is the similarity dimension, namely, the unique s > 0
solving

1 = λs1 + · · ·+ λsk .

The theorem applies to Cantor sets in the line and the Sierpinski Gasket.
It does not strictly apply to the von Koch curve. We’ll compute several
similarity dimensions.



76. Hausdorff Dimension of the Sierpinski Gasket

Figure: Sierpinski Gasket

The Sierpinski Gasket is
obtained from IFS
F = {f1, f2, f3} where

f1(z) = 1
2z ,

f2(z) = 1
2z + 1

2 ,

f3(z) = 1
2z + i

2 .

Each fi is a contraction with
λ = 1

2 . Thus

1 = 3
(
1
2

)s
or dimH(A) =

ln 3

ln 2
∼= 1.58



77. Cantor Set with Unequal Intervals

Figure: Cantor Set with Unequal Intervals

This Cantor set is obtained from IFS on R

F = {.4x , .5x + .5}

of contractions with λ1 = .4 and λ2 = .5.

1 = (.4)s + (.5)s = j(x).
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Using a root finder, the
solution is dimH(C ) = .867.



78. von Koch Curve

Figure: von Koch Curve

The von Koch Curve is
obtained from IFS
F = {f1, f2, f3, f4} where in
complex notation z = x + iy ,

f1(z) = 1
3z ,

f2(z) = eπi/3

3 z + 1
3

f3(z) = e−πi/3

3 z + eπi/3+1
3

f4(z) = 1
3z + 2

3 .

Each contraction has λ = 1
3 .

Thus

1 = 4
(
1
3

)s
or dimH(A) =

ln 4

ln 3
∼= 1.26



79. Hausdorff Dimension of the Minkowski Curve

Figure: Minkowski Curve

f1(z) = 1
4z ,

f2(z) = i
4z + 1

4

f3(z) = 1
4z + 1+i

4

The Minkowski Curve is
obtained from IFS
F = {f1, . . . , f8} where

f4(z) = − i
4z + 2+i

4

f5(z) = − i
4z + 1

2

f6(z) = 1
4z + 2−i

4

f7(z) = i
4z + 3−i

4

f8(z) = i
4z + 3

4

All λi = 1
4 . Thus

1 = 8

(
1

4

)s

or dimH(A) =
ln 8

ln 4
= 1.5.



80. Hausdorff Dimension of the Peano Curve

The Peano Curve is obtained from IFS
F = {f1, . . . , f9} where

f1(z) = 1
3z ,

f2(z) = i
3z + 1

3

f3(z) = 1
3z + 1+i

3

f4(z) = − i
3z + 2+i

3

f5(z) = −1
3z + 2

3

f6(z) = − i
3z + 1

3

f7(z) = 1
3z + 1−i

3

f8(z) = i
3z + 2−i

3

f9(z) = 1
3z + 2

3

The contractions all have
λi = 1

3 . Thus

1 = 9

(
1

3

)s

or dimH(A) =
ln 9

ln 3
= 2.



81. Hausdorff Dimension of Levy’s Dragon

Figure: Levy Dragon

Levy’s Dragon Curve is
obtained from IFS
F = {f1, f2} where

f1(z) = −1 + i

2
z +

1 + i

2

f2(z) =
1− i

2
z +

1 + i

2

Both contractions have
λi = 1√

2
. Thus

1 = 2

(
1√
2

)s

or dimH(A) =
ln 2

ln
√

2
= 2.



82. Kiesswetter’s Nowhere Differentiable Function

Attractors of an IFS can be used to find relatively simple constructions of
mathematically interesting objects. In 1872, Weierstrass first wrote a
continuous nowhere differentiable function on I = [0, 1]

f (x) =
∞∑
i=1

bi cos(aiπx).

In 1916, Hardy sharpened conditions that it be continuous for 0 < b < 1
and nowhere differentiabnle if also b > 1 and ab ≥ 1.

von Koch’ snowflake curve was contrived for the same purpose. But the
easiest construction is due to Kiesswetter in 1966.



83. Kiesswetter’s IFS

Figure: Yellow rectangle is mapped to
four rectangles by F

Kiesswetter considered the IFS

F = {f1, f2, f3, f4}

on [0, 1]× [−1, 1] where

f1(x) =

(
1
4 0
0 −1

2

)(
x1
x2

)
,

f2(x) =

(
1
4 0
0 1

2

)(
x1
x2

)
+

(
1
4
−1

2

)
,

f3(x) =

(
1
4 0
0 1

2

)(
x1
x2

)
+

(
1
4
0

)
f4(x) =

(
1
4 0
0 1

2

)(
x1
x2

)
+

(
3
4
1
2

)
.

Each affine map shrinks horizontally
by 1

4 and vertically by 1
2 , thus has

contraction constants λi = 1
2 .



84. Kiesswetter’s Nondifferentiable Curve

By Hutchinson’s Theorem there is an attractor A for F . Kiesswetter
showed that A is the graph of a curve A = {(x , k(x)) : 0 ≤ x ≤ 1} which
is Hölder Continuous

|f (x)− f (y)| ≤ C |x − y |
1
2 for all x , y ∈ [0, 1]

and that it is nowhere differentiable.



85. Kieswetter’s Nondifferentiable Function 1.



86. Kieswetter’s Nondifferentiable Function 2.



87. Kieswetter’s Nondifferentiable Function 3.



88. Kieswetter’s Nondifferentiable Function 4.



89. Kieswetter’s Nondifferentiable Function 5.



90. Hausdorff Dimension of Levy’s Dragon



91. Hausdorff Dimension of Levy’s Dragon



92. Hausdorff Dimension of Levy’s Dragon



93. Hausdorff Dimension of Levy’s Dragon



94. Hausdorff Dimension of Levy’s Dragon



Thanks!




