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5. Fractal. Cantor Set.

A fractal is a set with fractional dimension. A fractal need not be
self-similar. In this lecture we construct self-similar sets of fractional
dimension. The most basic fractal is the Middle Thirds Cantor Set. One
starts from an interval /; = [0, 1] and at each successive stage, removes
the middle third of the intervals remaining in the set.
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Then the Cantor Set is the limit C = (72 /n.




6. Picture of Cantor Sets

Figure: The sequence {/,} approximating the middle thirds Cantor Set.



7. “Butterfly” Attractor of Lorenz Equations.

“Butterfly” ODE limit set is a non self-similar fractal 1 < dimy(A) < 2



8. Cantor Set as the Attractor of an lterated Function System

The Cantor Set may be constructed using Iterated Function Systems.
The IFS is given by two maps on the line, 7 = {/, r}, where

() =% )= ng.

£ and r make two shrunken copies of the original the interval and located
at the left and right ends. Define the induced union map taking compact
sets A C R to new compact sets consisting of both shrunken copies

F(A) = ((A) U r(A)

where ¢(A) = {{(x) : x € A}. Consider the dynamical system of iterating
the maps. We get the Cantor Set as its its attractor (limit)

I2:.F(I]_), /3:]:(12),..., C:nli_>m .Fon(ll)
where we define F o F(A) = F(F(A)) and

n times

—~~
F"(A)=FoFo---0F(A)



9. Metric Spaces

Why does the sequence of sets converge? Let us put the structure on the
space of compact sets and do a little analysis. Recall first a fimiliar.

The distance function d on Euclidean Space X =[E" is

d(x,y) = [Ix = yll =

Euclidean Space has the structure of a metric space, namely, for all
x,y,z € X we have

o d(x,x) =0, d(x,y) =d(y,x),

e d(x,z) <d(x,y)+ d(y,z) triangle inequality
(which implies d(x,x) >0

e d(x,y) =0 implies x = y.



10. Complete Metric Spaces

{x;} C E"is a Cauchy Sequence if for every ¢ > 0 there is an N such that
d(xi, xj) < € whenever i, j > N.

Euclidean Space is a complete metric space because all Cauchy Sequences
converge. Namely, if {x;} is a Cauchy Sequence, then there is z € E"
such that x; — z as i — o0, i.e., for all ¢ > 0, there is N > 0 such that

d(xj,z) <€ whenever i > N.

A set K is compact if every sequence {x;} C K has a subsequence that
converges to a point of K. In Euclidean Space, K € E" is compact if and
only if it is closed and bounded (Heine Borel Theorem).

Surprisingly, the space K(E") of all compact sets E" and can be endowed
with the structure of a complete metric space under the Hausdorff
Metric.



11. e-Collar of a Set

Let IC(E") denote the nonempty compact subsets. For any A € K(E")
and ¢ > 0 define the set of points within € of A,

Ac={x € E":d(x,y) < e for some y € E"}
called the e-collar of A. The distance of the point x to A is
d(x,A) = }lg,fq d(x,y)
It is zero if x € A. The e-collar may aslo be given by
Ac={x € E": d(x,A) <e}
The infimum is achieved: since A is compact, there is y € A so that

d(x,y) = d(x, A).



12. Hausdorff Distance

Given compact sets A, B € K(E"), if we let

d(A, B) = maxd(x, B).

XxXEA
d(A, B) < e implies that A C B..

BUT d(A, B) MAY NOT EQUAL d(B,A) so it is not a metric. e.g.,
A={x€E?:|x| <1}, B={(2,0)} then d(B,A) = 1so B C A; but
d(A,B) =3 and A ¢ B;.

Hausdorff introduced

h(A, B) = max{d(A, B),d(B,A)} = inf{c: AC B. and B C A}

Theorem (Completeness of K(E"))

K(E") with Hausdorff Distance h is a complete metric space.
Furthermore, h satisfies for all A, B, C, D € IC(X)

h(AU B, C U D) < max{h(A, C), h(B, D)}




13. Proof of the Completeness Theorem for (K(E"), h)

Proof.  Symmetry (h(A, B) = h(B, A)) and positive definiteness
(h(A, B) > 0 with h(A,B) =0 = A = B) are obvious. To prove the
triangle inequality it suffices to show

d(A,B) < d(A,C)+d(C,B).
This implies the triangle inequality for h:

h(A, B) = max{d(A, B), d(B, A)}
< max{d(A, C) + d(C, B),d(B, C) + d(C, A)}
< max{h(A, C) + h(C, B), h(B, C) + h(C, A)}
= h(A, C) + h(C, B).



14. Proof of the Completeness Theorem-

Now to show d(A, B) < d(A, C) + d(C, B),

d(a,B) = Lnelg d(a, b)

< in (d d(c, b
< minmin (d(a, ¢) + d(c, b))

< m|n d(a,c) + m|n min d(c, b)
ceC €C beB

< d(a, C) + min d(c, B)
ceC
<d(a,C)+ mind(C, B)
ceC
<d(a, C)+d(C,B)
Maximizing the right side over a € A gives
Maximizing over a € A,

d(A, B) < d(A, C) + d(C, B).



15. Proof of the Inequality- -

The inequality follows from the set inclusion. Let r = h(A, C),
s=h(B,D), and t = max{r,s}. Then AC C,, C, C A, BC Ds and
D C Bs so
AC Cr U Ds C CtU Dt = (CU D)tv likewise B C (CU D)t
thus AU B C (C U D);. Similarly CUD C (AU B);. Hence
h(AUB,CUD) < t=max{h(A, C),h(B,D)}.

Tosee G;UDy =(CUD)s, x € (CUD); iff x=e+ v whereec CUD
and |v| < tiff x € G or x € Dy.



16. Proof of the Completeness Theorem- -

Sketch of completeness argument: suppose A, is a Cauchy Sequence in
(K, h). Define Ay to be the set of limit points of sequences {x,} where
Xp € An. Thus x € Ay if and only if there is a subsequence of this type
such that x; — x as j — oo. Since {A,} forms a Cauchy Sequence, for
every € > 0 there is an R(¢€) so that h(A,, Am) < € whenever

m,n > R(e). In particular, Ap, C (Ap)e for all m > n > R(e) so any
sequence X, € Ap, is bounded and thus has a limit point, showing A is
nonempty. Limits satisfy Asx, C (Ap)e for all n > R(e), hence A is
bounded. A convergent sequence of limit points is a limit point, so Ay is
closed, thus Ay, is compact, thus in K.

To show that also A, C (Ax). whenever n > R(e), pick z, € A,. For

k > R(e€), h(An, Ak) < €, so there is xx € Ak so d(xk, zn) < €. Let

z € A be a limit point of {xx}. For its converging subsequence
d(z,zm) = limj_ 00 d(Xk;, Zm) < €50 Zy € (Aco)e-

Putting the containments together shows h(An,, Ax) < € for all

m > R(e), thus A, converges to A in the Hausdorff metric. O



17. Contraction .

A mapping f : E” — E" is a A\-contraction if there is a constant
0 < X\ <1 such that

d(f(x),f(y)) < Ad(x,y), for all x,y € E".

If f : E" — E" is a A-contraction, then the induced map on K(E") is a
contraction in the Hausdorff Metric with the same constant

h(f(A), £(B)) < Ah(A,B),  for all A, B € K(E") .

Proof. Choose A, B € KC(E").

d(f(A). f(B)) = maxd(f(a), f(B)) < Amaxd(a, B) = Ad(A, B).

Similarly, d(f(B), f(A)) < Ad(B, A). Combining,
h(f(A), f(B)) = max{d(f(A), (B)),d(f(B),f(A))}
< Amax{d(A, B),d(B,A)} = Ah(A,B). [



18. Hutchnson's Lemma

Lemma (Hutchinson 1981)

Let fi,...,f : E" — E" be an IFS of contractions with constants \.
Then the induced union map on IC(E") given for A € K(E") by

F(A) = A(A)UHL(A)U--- U f(A)

is a contraction with the constant A = max{A1,..., \«}.

Proof. Choose A, B € KL(E"). Since a point is closer to a union of sets
than to any one set in the union,

d(F(A).F(B)) = d (U1fi(A). U1 5(B)) = max {d(f(4).U15(B)) |

< max {d(F(A), £(B))} < max {\d(A B))} < \d(A,B)

Similarly, d(F(B), F(A)) < Ad(B, A). Combining as before
h(F(A), F(B)) < Ah(A, B). O



19. Contraction Mapping Theorem

One of the ten basic facts every math major must know.

Theorem (Contraction Mapping)

Let (X, d) be a complete metric space and f : X — X be a contraction.
Then there is a unique fixed point x», € X such that f(xx) = Xco-

In fact, xo, may be found by iteration. Starting from any xp € X, define
the sequence x; = f(xp), x2 = f(x1), ..., Xo+1 = f(Xn), .... Then one
shows that the sequence converges to a unique point

Xoo = lim x,. [

n—oo

Applying this to iterated function systems, if F : KC(E") — KC(E") is a
contraction then there is a unique invariant set Ay, € K(E") such that
F(Ax) = Ax. It is found as the unique attractor for the dynamical
system F : IC(E") — KC(E"). For any nonempty compact set S,

As = lim F°(S).

n—oo



20. Cantor Set with Unequal Intervals

This Cantor set is obtained
from IFS F = {fi, L} on R
where

— - — — f(x) = .4x,
f(x) = .5x+.5

Each f;'s are contractions
with Ay = .4 and \» = .5.

Figure: Cantor Set with Unequal Intervals



21. Sierpinski Gasket

Figure: Sierpinski Gasket

The Sierpinski Gasket is
obtained from IFS
F ={f, fr, 3} where

fi(x) = (é
0= (§
50 - (§

Each f; is a contraction with

A=1




22. Sierpinski Gasket 0.




23. Sierpinski Gasket 1.




24. Sierpinski Gasket 2.




25. Sierpinski Gasket 3.




26. Sierpinski Gasket 4.




27. Sierpinski Gasket 5.



28. Sierpinski Gasket 6.
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30. von Koch Snowflake

L The von Koch Curve is
R ‘Lfﬂg obtained from IFS
E”?;, E F ={f, f, f,fs} where in
wagwﬂ M%wﬁwm complex notation z = x + iy,
Figure: One of Three Sides of the Snowflake fi(z) = lz’
3
mi/3

Helge von Koch (1870-1924) was a fr(z) = e’/ P 1
Swedish mathematician who studied 3 3

systems of infinitely many linear equations. f(z) =
He used pictures and geometric language in

the 1904 paper to construct his curve as an  f(7) = lz + g

example of a non-differentiable curve. 3 3
Weierstrass's 1872 description of such a Each contraction has A\ — L.
curve used only formulas. 3




31. von Koch Curve 1.




32. von Koch Curve 2.




33. von Koch Curve 3.

f\y/\sz‘x



34. von Koch Curve 4.

5 T,
SO PO




Sy

P P S U



36. Barnsley's Ferns

Images of Big Rectangle under F = {fi,, f3}.



37. Barnsley Fern F°?




38. Barnsley Fern F°4




39. Minkowski Curve

The Minkowski Curve is
obtained from IFS
F={f,...,fg} where

fi(z) = 1z,
Hh(z)=1tz+1
f(z) = 2z + 1
fa(z) = —fz+ 2
fo(z) = —4z+ 3
Figure: Minkowski Curve fol2) = %Z * ZT_I.
f(z) = sz + 3
The downward line in the middle consists of fo(z) = 4z + 3

two segments of length %.

=
>

|
B



40. Minkowski Curve 1.




41. Minkowski Curve 2.
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43. Minkowski Curve 4.



44. Minkowski Curve 5.



45. Peano Curve

The Peano Curve is obtained
from IFS F ={f,...,f”}

Hh

5 where
f(z) = 32,
f(z) =4z +3
1 1+i
fi(z) = 32+ 75"
() = iz + 2
fi(z) = —32+3
i fo(z) = —1z+ %
-1 1-i
Figure: Peano Curve fi(2) 3.'2 3
6(z) = o+ 2
This is called a space filling curve. Every fo(z) =3z+3
point of the diamond is on the curve. There
are many self-intersection points. The clontractlons all have
)\, == 3-



46. Peano Curve 1.




47. Peano Curve 2.




48. Peano Curve 3.




49. Peano Curve 4.




50. Peano Curve 5.




51. Levy's Dragons

Levy's Dragon Curve is
obtained from IFS
F ={f, f»} where

1+ 1+
f(z) =— > z+ 5
11— 1+
h(z) = 52 + >
Figure: On of Many Levy's Dragons Both contractions have

A= % Note that f; sends
Paul Lévy (1886-1971) was first to exploit  the interval in the southwest
self-similarity. His research focussed on direction to get the dragon
probability theory. to “snake.”



52. Levy's Dragon 1.



53. Levy's Dragon 2.




54. Levy's Dragon 3.



55. Levy's Dragon 4.




56. Levy's Dragon 5.



57. Levy's Dragon 6.
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63. Levy's Dragon 12.

O ul
o ._nm_._. [ .ﬂm.u_
L LI L hall §
st : :
HEHhL o SRS o
o s thfh ._.._hm:
n g ar 1 MH
1 _nmn_ g e |
.._+__”“ =4 g
o
|
P e iy =
E—.“lllln —.nm |““._u ﬁ“ﬁ
o =] Hu ._L.
: "
| = amE 111
g puu“
L —
=l 9 g
o i il il
E._-__. =
aEHh _Sfh S
I s Tl i
[apes 1
b, o “_n_“
[ 1T [ - ]
T 1 ] =
4 4 o
| 1 1 u
—I-”Im - Iu [ "mL
- 3 T »
[ - n..“m_“_u n-ummu
o is 1 dnaplal O 1N
_._.“_._nu_. [&. , o O , o 1 “.. s
i H o . ; al n_mmm_n_u
_L.._ rq _L_q 1 .r_._ - “h 3
i o gt o H g
[& slmlal
g =]
} n
_Lnum ml i
& J5h
oy Hh
1_._.”“ ! 2]
o




64. Levy's Dragon 13.




65. Levy's Dragon 14.




66. Levy's Dragon 15.




67. Self Similar Sets

A similarity transformation in Euclidean space is a linear map for x € R
T(x)=ARx+b

where A > 0 is a scaling factor, R is a rotation matrix and b is a
translation vector. Reflections are also similarity transformations. In two
dimensions, this is written in complex notation z = x + iy by

T(z) =az+b, (or T(z) = az+ b)

where a = \e'? € C, \ = |a| is the norm and 6 is the argument of a. T
is thus dilation by A followed by rotation by angle 8 and then by
translation of b € C.

A set A C RY is self-similar if there is a similarity transformation T that
identifies the a subset of S C A with itself T(S) = A.



68. Self-Similarity of the Snowflake Curve

1
‘{E_Jvﬂ fl(z) = §Za
43 f-2 z) = e%z_’_ 1
A e =Sy
_ e 3 e3 +1
Figure: The von Koch Curve is fi(2) = 3 213
self-similar. e.g., the cyan subset is fa(z) = 3z + %

similar to the whole curve.
are all invertible similarity

The von Koch curve A is the fixed transformations. In particular

set of the IFS F = {f, f, 3, f4 }, A= £(S)
=1

A= F(A).
(4) where the inverse is a similarity

The cyan subset is S = £(A), where transformation



69. Hausdorff Measure of a Set

The d-volume of a closed ball B,(x) = {y € R? : |x — y| < r} is cqr?,
whose rate of growth is the dimension.

To measure the s-dimensional volume of A C R”, lets take an e-cover
U(e) = {B;} of balls, namely B; = B,,(x;) with r; < e such that

A C |J; Bi and add their s-volumes. Then minimize over all such possible
covers

m(A,s,e€) = Ll{fg;‘) r

Since there are fewer sets in U(€) as € decreases, the function m(A, s, €)
increases as € decreases. So the refinement limit exists and we obtain the
s-dimensional Hausdorff outer measure

m(A,s) = lim m(A,s,e)
e—0+
For compact sets, this agrees with the Hausdorff measure.
Observe is that if T is a similarity transformation with factor A > 0 then

m(T(A),s) = Xm(A,s)



70. Facts About the s-Dimensional Hausdorff Outer Measure

Lemma

The set function A — m(A,s) has the following properties
Q@ m(0,s) =0 for all s > 0 where () is the empty set.
@ m(A1,s) < m(Az,s) whenever Ay C A;.
© (Subadditivity) For any finite or countable collection of subsets A;,

(UA,,5> < Z (A,s)

As a function of s, the function m(A, s) is infinite for small values of s
and zero for large values, Only for one s can m(A,s) be something else.

Definition (Hausdorff Dimension)

dimy(A) = sup{s € [0,00) : m(A,s) = o}
= inf{s € [0,00) : m(A,s) =0}




71. Hausdorff Dimension

If s > 0 is such that m(A,s) < oo then m(A,t) =0 for every t > s.

Proof.

Ate:mer:mf rt °r?

1

< inf €7 =¢ _Sm(A, S, €).

—_ ]

U(e)

Since t —s > 0 we have €/7° — 0 as € = 0+. But m(A,s,e) < m(A,s)
because it is decreasing in ¢, so

lim m(A,t,e)=0. O
e—0+

If s > 0 is such that m(A,s) > 0 then m(A,t) = oo for every t < s.




72. Hausdorff Dimension of the Middle Thirds Cantor Set

We find the dimension by covering with balls.

The IFS for the Cantor set is F = {fi, f}. If | = [0, 1] then the k-th
approximation to C is
fOk(/)

which consists of 2 intervals which are balls of radius =1.. If

2.3k"
this set of balls belongs to U(¢) and for s > 0,

m(C )<Zr-5*2k ! s*l 2 '
e N U A TR

This quantity tends to zero as € — 0 (same as k — c0) if 2 < 3° or

s> ::—g So dimy(C) < :2—% = .63.

1
3k =€

Show dimy(C) is larger than % is harder because we need to prove an

inequality that holds for ALL covers U(e), but it is true.



73. Similarity Argument for Dimension of the Middle Thirds Cantor Set

We exploit the self-similarity to compute dimension of the Cantor Set.

Let's assume s = dimy C and 0 < m(C,s) < oo. Because the IFS for the
Cantor set consists of similarity transformations F = {f;, f»}, with

Ai = 3, the set is self-similar and C = f(C) U (C). By subadditivity
and scaling for similarity transformations,

m(C,s) = m(f(C)U K(C),s)
< m(A(C),s)+ m(f(C),s)
=Xm(C,s)+ X°m(C,s)

1\°
1<2(= .
=2(s)

0=In1<In2—5sIn3

or

Solving for s,

SO



74. Dimension for IFS of Similarity Transformations

If A'is the attractor of an IFS F = {fi, ..., fi} of similarity
transformations with 0 < A; < 1 and if the f;(A) are disjoint, then A is
self similar. Assuming that s = dimy(A) and 0 < m(A,s) < oo

k k
mmwzm<um0)s§yﬁw»%ZvMAs
1 i i=1

=1 i=1

which implies
L= X+ AL =(9)

Because the right side is a strictly decreasing function with j(0) = k > 1
and lims_,o j(s) = 0, there is a unique solution 1 = j(s), called the
similarity dimension, which is an upper bound for dimy(A).

Because iterates may overlap, this may not be equal to dimy(S).
Moran's Theorem gives conditions so the similarity dimension equals the
Hausdorff dimension.



75. Moran's Theorem

Theorem (P. Moran, 1945)

Suppose that A C R9 is a compact attractor of an IFS F = {f,..., fi}
of similarity transformations with 0 < \; < 1. Assume that either f;(A)
are disjoint for j = 1,..., k or that A obtained in the following way:
Suppose Q4 is an open bounded set and Q’2 = £j(Q1) be disjoint open
sets for j = 1,..., k contained in Q. Similarly let Q4f = f,(2,) for
£=1,... k be dIS_jOI'It in all j and so on. Suppose A is the intersection of

971, UjQé, Ungje,

Then dimg(A) is the similarity dimension, namely, the unique s > 0
solving
L= )9 b o=t 05,

The theorem applies to Cantor sets in the line and the Sierpinski Gasket.
It does not strictly apply to the von Koch curve. We'll compute several
similarity dimensions.




76. Hausdorff Dimension of the Sierpinski Gasket

Figure: Sierpinski Gasket

The Sierpinski Gasket is
obtained from IFS
F ={f, f, 3} where

ﬁ_(Z) = %Za
f(z) =3z + 3,
(z) = %z + é

Each f; is a contraction with
A=1. Thus



77. Cantor Set with Unequal Intervals

Plot of j(x)

Figure: Cantor Set with Unequal Intervals

This Cantor set is obtained from IFS on R

F = {.4x,.5x+ .5} Using a root finder, the

solution is dimy(C) = .867.
of contractions with \; = .4 and A\, = .5.



78. von Koch Curve

J.,F“f Wgwg:w

fﬁj’%ﬁé

E’fi’ y
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Figure: von Koch Curve

The von Koch Curve is
obtained from IFS

F ={f, f, 3,4} where in
complex notation z = x + iy,

f(z) = %z,

f(z) = L7241

flz) = =52z + 5l
fa(z) = %z + %

Each contraction has A = %
Thus



79. Hausdorff Dimension of the Minkowski Curve

The Minkowski Curve is
obtained from IFS
F ={f,...,fg} where

fa(z) = —hz+ 2
fi(z) = —4z+ 3
fo(z) = 32 + %
f(z) =tz + 3
fo(z) =tz + 3
Figure: Minkowski Curve
All \j = %. Thus
1 1\°

f]_(Z) = ZZ7 1= 8 Z

ole) =z % In8

f3(z) = %z—f— % or dImH(A) = m =1.5.



80. Hausdorff Dimension of the Peano Curve
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The Peano Curve is obtained from IFS

F={f,..

o
~—~
N
N—r
I

&h
—
N
N
I

oD
—~
N
N
Il
Wl W= W=
N

., fo} where

N

N
+ +
- (.0“—‘
off

fa(z) = —Lz+ 2
fs(z) = —%z + %
fo(z) = —é'z %
f(z)=3z+ 4
fo(z) = 4z + &
fo(z) = 3z +3
The contractions all have
Ai = 3. Thus
1 S
1=91(=
(3)
In9
di A= —=2
or dimy(A) i3



81. Hausdorff Dimension of Levy's Dragon

Levy’s Dragon Curve is
obtained from IFS
F ={f, 2} where

14+ 14+
fi(z) =— It
C1-i 14

7 2T

Both contractions have
- 1
A= N Thus
. ) 1 S
Figure: Levy Dragon 1=02 <)

V2




82. Kiesswetter's Nowhere Differentiable Function

Attractors of an IFS can be used to find relatively simple constructions of
mathematically interesting objects. In 1872, Weierstrass first wrote a
continuous nowhere differentiable function on / = [0, 1]

f(x) = Z b’ cos(a'mx).
i=1

In 1916, Hardy sharpened conditions that it be continuous for 0 < b < 1
and nowhere differentiabnle if also b > 1 and ab > 1.

von Koch' snowflake curve was contrived for the same purpose. But the
easiest construction is due to Kiesswetter in 1966.



83. Kiesswetter's IFS

k on [0,1] x [-1, 1] where

Il
A i

fi(x)

fa(x)

ORI O OBNF

&h
—~
X
~
I

f(x) =

O b=

7 N\

Figure: Yellow rectangle is mapped to
four rectangles by F

Each affine map shrinks horizontally

) ) 1 . 1
Kiesswetter considered the IFS by z and vertically by P thus has

contraction constants \; = %

F=A{f,f, f 1}



84. Kiesswetter's Nondifferentiable Curve

By Hutchinson's Theorem there is an attractor A for F. Kiesswetter
showed that A is the graph of a curve A = {(x, k(x)) : 0 < x < 1} which
is Holder Continuous

If(x) — f(y)| < Clx—y|2  forall x,y € [0,1]

and that it is nowhere differentiable.



85. Kieswetter's Nondifferentiable Function 1.




86. Kieswetter's Nondifferentiable Function 2.




87. Kieswetter's Nondifferentiable Function 3.




88. Kieswetter's Nondifferentiable Function 4.




89. Kieswetter's Nondifferentiable Function 5.




90. Hausdorff Dimension of Levy's Dragon



91. Hausdorff Dimension of Levy's Dragon



92. Hausdorff Dimension of Levy's Dragon



93. Hausdorff Dimension of Levy's Dragon



94. Hausdorff Dimension of Levy's Dragon
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