
Applied Mathematics Seminar, University of Utah

Elastic Rings and Nanotubes

Andrejs Treibergs

University of Utah

October 4, 2010



Question about a Closed Curve in the Plane

Nanotubes–

Find the compression modulus of elastic rings under hydrostatic pressure.
Application of a geometric variational problem for bending energy to
materials science.



My slides are available for downloading

“Elastic Rings and Nanotubes” Beamer Slides may be found at the URL

http://www.math.utah.edu/∼treiberg/ElasticNano2010.pdf

This is joint work with Feng Liu, Materials Science & Engineering,
University of Utah. Summary in

J. Zang, A. Treibergs, Y. Han & F. Liu, Geometric Constant Defining
Shape Transitions of Carbon Nanotubes under Pressure, Phys. Rev. Lett.
92, 105501 (2004)

Mathematical details are available in the manuscript

F. Liu & A. Treibergs, On the compression of elastic tubes, University of
Utah preprint, (2006)



Carbon Nanotubes

Single walled carbon nanotubes (SWNT’s) were first noticed in the
1990’s in the soot of electrical discharge from graphite electrodes. They
have a diameter around 1 nm and a length 106 nm.

They are “rolled up” from sheets of graphene. Graphite consits of layers
of graphene. Graphene is composed of carbon atoms with hybridized Sp3
carbon bonds, which means that the bonds to each atom are planar and
120◦ apart. The atoms of graphene are located at vertices of a uniform
hexagonal grid whose edges have length about .14 nm.



Zigzag SWNT’s

Graphene may be rolled up in several ways, depending on which atoms
are identified. If a1 ande a2 are generating vectors of the hex lattice,
then the chiral vector indicates which atom is identified in the rollup.

Cb(n,m) = na1 + ma2.

Cb rolls up into a circle and C⊥
b is the axis direction.

Figure: SWNT with chiral vector Cb(n, 0) is called “Zigzag.”



Chiral vector Cb(n,m) determines geometry of SWNT



Armchair and Chiral SWNT’s

Figure: SWNT with chiral vector Cb(n, n) is called “Armchair.”

Figure: SWNT with other chiral vectors called “Chiral.”



Cross sections of nanotubes

Researchers led by Feng Liu have done quantum transport calculations
using molecular dynamics simulations to determine equilibrium shapes,
mechanical and electrical properties of SWNTs under constant pressure.
The tube undergoes a metal to semiconductor transition with
corresponding decrease in conductance.

Figure: Cross sections of armchair nanotube as hydrostatic pressure is increased.



Liu’s Nano Pressure Sensor

Figure: Pressure sensor design

How hard is the tube? Find the modulus of compression

µ =
dpressure
d lnArea

Approximate using a continuum model, the section of an elastic tube.
Answer can be found using calculus. (And MAPLE!)



Continuum model of elastic ring in the plane (cross section of tube)

The cross section of the tube is to be regarded as an inextensible elastic
rod in the plane which is subject to a constant normal hydrostatic
pressure P along its outer boundary. The section is assumed to have a
uniform wall thickness h0 and elastic properties. The centerline of the
wall is given by a smooth embedded closed curve in the plane Γ ⊂ R2

which bounds a compact region Ω whose boundary has given length L0

and which encloses a given area A0. Among such curves we seek one, Γ0,
that minimizes the energy

E(Γ) =
B
2

∫
Γ
(K − K0)

2 ds + P (Area(Ω)− A0) ,

where B =
Eh3

0

12(1− ν2)
is the flexural rigidity modulus of the section,

E is Young’s modulus, ν is Poisson’s ratio, K denotes the curvature of

the curve and K0 is the undeformed curvature (=
2π

L0
for the circle.)



Equivalent geometric model

Because the total curvature of a curve
∫
Γ K ds = 2π, this is equivalent to

the problem of minimizing the bending energy E(Γ) =
∫
Γ K 2 ds, among

curves of fixed length L0 that enclose a fixed area A0 = Area(Ω).

Figure: Elastica with length 2π



Euler Elstica



Euler Elastica -



Related problem for curves: Reverse Isoperimetric Inequality

In work with Ralph Howard, we showed that the problem of minimizing
the area among curves of fixed length 2π ≤ L0 ≤ 14

3 π that satisfy

sup
Γ
|K | ≤ 1

is solved by the bang-bang (piecewise unit circle arc) curve

Figure: Largest area with length L0 and |KJ| ≤ 1.



Formulate Variational Problem for Quarter of Curve

s = arclength
θ(s) = angle from x-axis
to tangent vector (indicatrix)
T (s) = (cos θ(s), sin θ(s))

Assuming minimizer has
x ,y -reflection symmetry (can be
proved). Seek θ(s) ∈ C 1([0, L])
where 4L = L0.

X (s) = (x(s), y(s)) =

∫ s

0
T (σ) dσ

θ(0) = 0 and θ(L) = π
2 .

If θ(s) is minimizer, γ = X ([0, L]).
Reflect to get closed curve Γ.
Assume Γ embedded.
Let γ̂ denote the closed curve γ
followed by the line segment from
X (L) to (0, y(L)) followed by the
line segment back to (0, 0).
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Functional in terms of θ(s)

X (s) = (x(s), y(s)) =
∫ s
0 (cos θ(σ), sin θ(σ)) dσ

By Green’s theorem, because dy = 0 on the horizontal segment and
x = 0 on the vertical segment,

1
4Area(Γ) = 1

4

∫
Γ x dy =

∮
γ̂ x dy =

∫
γ x dy

Since we are looking to minimize E subject to Area(θ) ≤ A0/4 = A, the
Lagrange Multiplier λ = 8P/B is nothing more than scaled pressure.
λ ≥ 0 since it takes energy to squeeze the curve. At minimum,
4 δE = −λ δArea. Lagrange Functional is thus

L[γ] = 4
∫
γ K (s)2 ds − λ

{
A−

∫
γ x dy

}
= 4

∫ L
0 θ̇(s)2 ds − λ

{
A−

∫ L
0

∫ s
0 cos θ(σ) dσ sin θ(s) ds

}
.



First Variation Formula

A minimizer θ(s) satisfies θ(0) = 0 and θ(L) = 2/π. Variation θ + εv
where v ∈ C 1([0, L]) with v(0) = v(L) = 0. Then

0 = δL = d
dε

∣∣
ε=0

L = 8
L∫
0

θ̇v̇ ds

− λ
L∫
0

{
s∫
0

v(σ) sin θ(σ) dσ sin θ(s)−
s∫
0

cos θ(σ) dσ cos θ(s)v(s)

}
ds

Integrating by parts, and reversing the order of integration in the second
integral,

δL = −8
L∫
0

θ̈v ds

−λ

{
L∫
0

L∫
σ

sin θ(s) ds v(σ) sin θ(σ) dσ −
L∫
0

s∫
0

cos θ(σ) dσ cos θ(s)v(s) ds

}
.



First Variation Formula -

Switching names of the integration variables in the second term yields

δL =

−
L∫
0

[
8θ̈(s) + λ

{
L∫
s

sin θ(σ) dσ sin θ(s)−
s∫
0

cos θ(σ) dσ cos θ(s)

}]
v(s) ds.

Since v ∈ C 1
0 ([0, L]) was arbitrary, the minimizer satisfies the

integro-differential equation

8θ̈(s) + λ

{
L∫
s

sin θ(σ) dσ sin θ(s)−
s∫
0

cos θ(σ) dσ cos θ(s)

}
= 0

which is for appropriate λ, the L2 gradient of E on the manifold of closed
curves with given L0 and A0

−∇E[θ] = 0.



Wen’s Curve Straightening Flow

Theorem (Yingzhong Wen 1996)

Let θ0(s) ∈ C∞(S1) be an immersed closed curve in the plane of length
L0 with total turning index η ∈ Z. (2πη = θ(L0)− θ(0).)

Then there is a unique long time solution θ(s, t) on S1 × [0,∞) of
turning index η of the curve strtaightening flow

∂θ

∂t
= −∇E[θ],

θ(s, 0) = θ0(s).

The flow preserves convex curves.

If η 6= 0 then the flow converges exponentially to a η-fold covered
circle of total length L0 as t →∞.



First Variation Formula - -

Thus if λ = 0 we must have θ(s) = πs
2L and γ is a circle of radius L

π .

If not a circle then λ > 0. To see the DE, assume θ̇ 6= 0, differentiate

θ′′′ = λ
8 {sin θ(s) sin θ(s) + cos θ(s) cos θ(s)}
−λ

8

{∫ L
s sin θ(σ) dσ cos θ(s) +

∫ s
0 cos θ(σ) dσ sin θ(s)

}
θ′(s)

= λ
8 −

λ
8

{∫ L
s sin θ(σ) dσ cos θ(s) +

∫ s
0 cos θ(σ) dσ sin θ(s)

}
θ′(s)

θ′′′′ = λ
8 {sin θ(s) cos θ(s)− cos θ(s) sin θ(s)} θ′(s)

+λ
8

{∫ L
s sin θ(σ) dσ sin θ(s)−

∫ s
0 cos θ(σ) dσ cos θ(s)

}
(θ′(s))2

−λ
8

{∫ L
s sin θ(σ) dσ cos θ(s) +

∫ s
0 cos θ(σ) dσ sin θ(s)

}
θ′′(s)



Euler Lagrange Equation

From which we get

θ′′′′θ′ = −θ′′ (θ′)3 +

[
θ′′′ − λ

8

]
θ′′(s).

This differential equation may be integrated as follows:

θ′′′′θ′ − θ′′′θ′′

(θ′)2
=

[
θ′′′

θ′

]′
= −θ′θ′′ − λθ′′

8(θ′)2
=

[
−1

2
(θ′)2 +

λ

8θ′

]′
so there is a constant c1 so that

θ′′′ = c1θ
′ − 1

2
(θ′)3 +

λ

8
. (1)

In other words, the curvature K = θ′ satisfies

K ′′ = c1K +
λ

8
− 1

2
K 3.



Buckling occurs when there is sufficient pressure

Consider L0-periodic variations of the circle with K = k0 constant.

c1 =
k2
0
2 −

λ
8k0

Linearizing around the K = k0, the variation of curvature satisfies

ẅ +
(
k2
0 + λ

8k0

)
w = 0

The m-th eigenvalue of the circle is m2k2
0 . The first corresponds to

translation of the circle and λ = 0. The shape does not deform until the
second eigenvalue, the m = 2 mode. Hence the tube buckles when

k2
0 + λ

8k0
= m2k2

0

or (since m ≥ 2) the pressure exceeds λ = 24k3
0 .

The noncircular elastica occur post-buckling.



First Integral of Euler Lagrange Equation

Multiply by K ′ and integrate. For some constant H,

(K ′)2 = c1K
2 + H +

λK − K 4

4
= F (K ).

The Euler-Lagrange equations have the following immediate
consequence. The area is given using (1)

A =
1

2

∫
γ
x dy − (y − y(L)) dx

=
1

2

∫ L

0

{
sin θ(s)

∫ s

0
cos θ(σ) dσ − cos θ(s)

∫ L

s
sin θ(σ) dσ

}
ds

=
4

λ

∫ L

0

{
λ
8 − θ′′′

θ′

}
ds

=
2

λ

∫ L

0
K 2 ds − 4c1L

λ
.



Determining the Parameters

Since the curve closes, the curvature is a L0-periodic function which
satisfies the nonlinear spring DE. The curvature continues as an even
function at {0, L}. BC on θ imply K ′(0) = K ′(L) = 0. As we have
differentiated twice, the solutions of the ODE have two extra constants
of integration which have to satisfy IE.

Buckling occurs in the n = 2 mode so the optimal curves will have four
vertices: the curves will be elliptical or peanut shaped, the endpoints of
the quarter curves will be the minima and maxima of the curvature
around the curve, and these will be the only critical points of curvature.
Since the minimum K may be negative, as in peanut shaped regions, the
embeddedness implies on [0, L],

K (0) = K1 is the maximum of the curvature, and
K (L) = K2 is the minimum of curvature around the curve.

K is strictly decreasing on [0, L]

Thus K may be used to replace s as an integration variable.



Determining the Parameters -

One degree of freedom is homothety. Scale X̃ = cX then

K̃ = c−1K , dK̃/ds̃ = c−2K ′, c̃1 = c−2c1, H̃ = c−4H, λ̃ = c−3λ.

λ > 0 for noncircular regions.

As K and K ′ vary, they satisfy the first integral

(K ′)2 = c1K
2 + H + λK−K4

4 = F (K )

0 = F (K1) = F (K2). Thus, given K1,K2 we can solve for c1 and H,

c1 = 1
4

(
K 2

1 + K 2
2 − λ

K1+K2

)
,

H = −K1K2
4

(
K1K2 + λ

K1+K2

)
,

provided K2 6= −K1.



Determining the Parameters - -

(K ′)2 = c1K
2 + H +

λK − K 4

4
= F (K )

4F (K ) = Q1(K )Q2(K ) factors into quadratic polynomials, where

Q1 = (K1 − K )(K − K2);

Q2 = K 2 + (K1 + K2)K + K1K2 +
λ

K1 + K2

Assume that F (K ) is positive in the interval K2 < K < K1.
Since the possible homotheties and translations (shifts like K (s + c))
have been eliminated, the remaining indeterminacy comes from the angle
Θ changes by exactly π/2 over γ. Thus given K2, we solve for K1 so that

π

2
= Θ(L) =

L0∫
0

K (s) ds =

K1∫
K2

K dK√
F (K )



Determining the Parameters - - -

If there are 2` vertices in the solution curve, then

π

`
=

L0∫
0

K (s) ds =

K1∫
K2

K dK√
F (K )

= Θ(K1,K2, λ).

In fact, this integral can be reduced to a complete elliptic integral.
Similarly

L =

L0∫
0

ds =

K1∫
K2

dK√
F (K )

= Λ(K1,K2, λ)

is also a complete elliptic integral.



Expression in terms of elliptic integrals - - Simplest example

L =

∫ K1

K2

dK√
F (K )

= Λ(K1,K2, λ)

Change variables of form T = αK−β
γK+δ to get

L = c2

∫ 1

−1

dT√
(1− T 2)(1−m2T 2)

= 2c2K(m)

where K(m) is the complete elliptic integral of the first kind.

c2 =
4

(K1 − K2)
√

µ2
, m =

√
µ2

µ1
, S = K1 + K2, P = K1K2,

and α, β, γ, δ are functions of µ1, µ2 where

µ1, µ2 =
S3 + 4PS + 2λ± 2

√
(λ + 2K1S2)(λ + 2K2S2)

S(K1 − K2)2
. (2)



Reducing to Elliptic Integrals.

4F (K ) = Q1(K )Q2(K ). Choose µi so that Q2 − µQ1 is a perfect square.
The discriminant vanishes since roots are equal, so can solve for µ (2).

∆ = D2(µ + 1)2 − 4S2µ− 4(µ + 1)
λ

S
= 0

Say, µ1 > µ2. The factors are

Q2 − µ1Q1 = F 2
1 = (αK − β)2

Q2 − µ2Q1 = F 2
2 = (ηK + δ)2.

We can now solve for the factors as sums of squares.

Q1 =
F 2

1 − F 2
2

µ2 − µ1
, Q2 =

µ2F
2
1 − µ1F

2
2

µ2 − µ1



Reducing to Elliptic Integrals. -

The idea is to change variables in the integral according to

T =
F1

F2
=

αK − β

ηK + δ
, K =

β + δT

α− ηT
,

dT

dK
=

αδ + βη

(ηK + δ)2
.

The function T is increasing. Since Q1(K1) = Q1(K2) = 0 it follows that
T = 1 when K = K1 and T = −1 when K = K2. Moreover,

Q1Q2 =
(F 2

1 − F 2
2 )(µ2F

2
1 − µ1F

2
2 )

(µ2 − µ1)2
=

(T 2 − 1)(µ2T
2 − µ1)F

4
2

(µ2 − µ1)2

Therefore, the integral becomes

L =
2(µ1 − µ2)

(αδ + βη)
√

µ1

1∫
−1

dT√
(1− T 2)(1− µ2

µ1
T 2)

=
4(µ1 − µ2)

(αδ + βη)
√

µ1
K(m)

where m =
√

µ2/µ1 is imaginary.



Solution of M. Levy (1883) and G. Carrier (1945)

For fixed L and `, we may solve

L = Λ(K1,K2, λ)
π

`
= Θ(K1,K2, λ)

for K1(λ, `), K2(λ, `) and then the incomplete elliptic integral for the
arclength as function of the curvature

s =

∫ K

K2

dK√
F (K )

may be inverted to give a solution of the curvature equation in the form

K =
β − δ cn(ζs;m)

α + η cn(ζs;m)

where α, β, γ, δ, m and ζ depend on λ and `.



Unphysical solution for the ` = 3 mode

Figure: Mode n = 3 elastica for various pressures and length L = π/2.



Computation of the compression modulus

We saw how to express the quarter area

A =
2

λ

L∫
0

K 2 ds − 4c1L

λ

=
2

λ

K1∫
K2

K 2 dK√
F (K )

− 4c1L

λ

= A(K1,K2, λ)

which is a complete elliptic integral. Thus, A depends on λ and its
compression modulus is gotten by differentiating (implicitly)

µ =
dλ

d log A



Pressure vs. Area for elastica

Figure: Elastica pressure λ vs. quarter area A.



Modulus of Compression for the elastic tube

Figure: Modulus dλ/d lnA versus λ.



Some formulas

The parameters can all be expressed in terms of a basic set (λ, µ1, µ2, c2)
where c2 determines the shift K (s + c2). In these parameters,

L =
4(1− µ1µ2)

1
3 (1 + µ1)

1
6 (1 + µ2)

1
6

λ
1
3
√

µ1

K
(√

µ2

µ1

)
Θ =

4(µ1 − µ2)

(1 + µ1)
1
2 (1 + µ2)

1
2
√

µ1

Π

(
1 + µ2

1 + µ1
,

√
µ2

µ1

)

− 2(1 + µ1)
1
2 (1− µ2)

(1 + µ2)
1
2
√

µ1

K
(√

µ2

µ1

)

A =
8µ1E

(√
µ2
µ1

)
− 4 (µ1µ2 + 2µ1 + 1)K

(√
µ2
µ1

)
λ

2
3 (1− µ1µ2)

1
3 (1 + µ1)

1
6 (1 + µ2)

1
6
√

µ1

.

With L and Θ fixed, eliminating µ1, µ2 yields relation of λ to A.



Elliptic Functions

Elliptic integrals of the first, second and third kinds

K(m) =

1∫
0

dT√
(1− T 2)(1−m2T 2)

E(m) =

1∫
0

√
1−m2T 2

√
1− T 2

dT

Π(n,m) =

1∫
0

dT

(1− nT 2)
√

(1− T 2)(1−m2T 2)



Computation of deformation moduli.

The explicit formulæ allow differentiation to obtain explicit rates of
change. For example let us compute the pressure modulus of area
dλ/d lnA. Then there is a mapping
F (µ1, µ2, λ) = (Θ(µ1, µ2), L(µ1, µ2, λ)) implicitly defines (µ1, µ2) in
terms of λ so the result follows from differentiating

d lnA

dλ
=

∂ lnA

∂µ1

∂µ1

∂λ
+

∂ lnA

∂µ2

∂µ2

∂λ
+

∂ lnA

∂λ

Since Θ and L are constant, differentiating F , we find

0 =
∂ lnΘ

∂λ
=

∂ lnΘ

∂µ1

∂µ1

∂λ
+

∂ lnΘ

∂µ2

∂µ2

∂λ

0 =
∂ ln L

∂λ
=

∂ ln L

∂µ1

∂µ1

∂λ
+

∂ ln L

∂µ2

∂µ2

∂λ
+

∂ ln L

∂λ



Computation of deformation moduli. -

So by Cramer’s rule, ∂µ1
∂λ

∂µ2
∂λ

 = −

 ∂ ln Θ
∂µ1

∂ lnΘ
∂µ2

∂ ln L
∂µ1

∂ ln L
∂µ2


−1  0

∂ ln L
∂λ



=
∂ ln L
∂λ

∂ lnΘ
∂µ1

∂ ln L
∂µ2

− ∂ lnΘ
∂µ2

∂ ln L
∂µ1

 ∂ lnΘ
∂µ2

−∂ lnΘ
∂µ1


which means that

d lnA

dλ
=

∂ ln L

∂λ

(
∂ lnA

∂µ1

∂ lnΘ

∂µ2
− ∂ lnA

∂µ2

∂ lnΘ

∂µ1

)
∂ lnΘ

∂µ1

∂ ln L

∂µ2
− ∂ lnΘ

∂µ2

∂ ln L

∂µ1

+
∂ lnA

∂λ
.



Computation of deformation moduli. - -

By using derivatives of elliptic functions, e.g.,

dK(m)

d m2
=

E(m)

2m2(1−m2)
− K(m)

2m2

we compute the six derivatives and plug into the modulus formula, e.g.,

ln L = ln 4 +
ln(1− µ1µ2)

3
+

ln(1 + µ1)

6

+
ln(1 + µ2)

6
− lnλ

3
− lnµ1

2
+ ln

(
K

(√
µ2

µ1

))
∂ ln L

d µ1
=

1− 2µ2 − 3µ1µ2

6(1− µ1µ2)(1 + µ1)
−

E
(√

µ2
µ1

)
2(µ1 − µ2)K

(√
µ2
µ1

)
etc.



Thanks!




