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2. References
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3. Outline.

Surfaces of Euclidean Space and Riemannian Surfaces

Induced Metric

Hyperbolic Space.

Parabolicity.

Complete Manifolds with Finite Total Curvature.



4. Examples of Surfaces.

Some examples of what should be surfaces.

Graphs of functions
G2 = {(x , y , z) ∈ R3 : z = f (x , y) and (x , y) ∈ U }

where U ⊂ R2 is an open set.

Level sets, e.g.,
S2 = {(x , y , z) ∈ R3 : x2 + y2 + z2 = 1}

This is the standard unit sphere.

Parameterized Surfaces, e.g.,

T2 =
{(

(A + a cosφ) cos θ, (A + a cosφ) sin θ, a sinφ)
)

: θ, φ ∈ R
}

is the torus with radii A > a > 0 constructed as a surface of
revolution about the z-axis.



5. Local Coordinates.

A surface can locally be given by a curvilinear coordinate chart, also
called a parameterization. Let U ⊂ R2 be open. Let

X : U → R3

be a C1 function. Then we want M = X (U) to be a surface. At each
point P ∈ X (U) we can identify tangent vectors to the surface. If
P = X (a) some a ∈ U, then

Xi (a) =
∂X

∂ui
(a)

for i = 1, 2 are vectors in R3 tangent to the coordinate curves. To avoid
singularities at P, we shall assume that all X1(P)and X2(P) are linearly
independent vectors. Then the tangent plane to the surface at P is

TPM = span{X1(P),X2(P)}.



6. Example of Local Coordinates.

For the graph G2 = {(x , y , z) ∈ R3 : z = f (x , y) and (x , y) ∈ U } one
coordinate chart covers the whole surface, X : U → G2 ∩ V = G2, where

X (u1, u2) = (u1, u2, f (u1, u2)).

where V = {(u1, u2, u3) : (u1, u2) ∈ U and u3 ∈ R}.
The tangent vectors are thus

X1(u1, u2) =

(
1, 0,

∂f

∂u1
(u1, u2)

)
,

X2(u1, u2) =

(
0, 1,

∂f

∂u2
(u1, u2)

) (1)

which are linearly independent for every (u1, u2) ∈ U.



7. Definition of a Surface.

Definition

A connected subset M ⊂ R3 is a regular surface if to each P ∈ M, there
is an open neighborhood P ∈ V ⊂ R2, and a map

X : U → V ∩M

of an open set U ⊂ R2 onto V ∩M such that

1 X is differentiable. (In fact, we shall assume X is smooth (C∞)

2 X is a homeomorphism (X is continuous and has a continuous
inverse)

3 The tangent vectors X1(a) and X2(a) are linearly independent for all
a ∈ U.



8. Transition Functions.

Figure: Extrinsic: Coordinate Charts for Surface in E3

Suppose S ⊂ R3 is a surface and at P ∈ S there are two coordinate
charts σ : U → S and σ̃ : Ũ → S such that U and Ũ are open subsets of
R2 and P ∈ σ(U) ∩ σ̃(Ũ). Then on the overlap, for u ∈ σ−1(σ̃(Ũ)), we
have the transition function

ũ = g(u) = σ̃−1(σ(u))
which gives the change of coordinates map. These maps are smooth
diffeomorphisms on overlaps, by the Inverse Function Theorem.



9. Abstract Differentiable Manifold.

To abstract the idea of a regular surface, we drop the requirement that
M ⊂ R3 and just require that there is a topological space M that has a
collection of coordinate charts, an atlas, whose transition functions are
smooth and consistently defined. Such an abstract surface is called a
differentiable manifold and the atlas of charts with corresponding
transition functions is called a differential structure.

Question: Are there differentiable manifolds that do not arise as
submanifolds of Euclidean space with the induced differential structure?
Answer: No. (Provided we allow big codimension.)

Theorem (Whitney’s Embedding Theorem.)

Let Mn be an abstract, smooth differentiable manifold of dimension n.
Then Mn is diffeomorphic to some W n ⊂ RN , an embedded regular
submanifold provided N ≥ 2n + 1.



10. Lengths of Curves.

The Euclidean structure of R3, the usual dot product, gives a way to
measure lengths and angles of vectors. If V = (v1, v2, v3) then its length

|V | =
√

v2
1 + v2

2 + v2
3 =

√
V • V

If W = (w1,w2,w3) then the angle α = ∠(V ,W ) is given by

cosα =
V •W

|V | |W |
.

If γ : [a, b] → M ⊂ R3 is a continuously differentiable curve, its length is

L(γ) =

∫ b

a
|γ̇(t)| dt.



11. Induced Riemannian Metric.

If the curve is confined to a coordinate patch γ([a, b]) ⊂ X (U) ⊂ M,
then we may factor through the coordinate chart. There are continuously
differentiable u(t) = (u1(t), u2(t)) ∈ U so that

γ(t) = X (u1(t), u2(t)) for all t ∈ [a, b].

Then the tangent vector may be written

γ̇(t) = X1(u1(t), u2(t)) u̇1(t) + X2(u1(t), u2(t)) u̇2(t)

so its length is

|γ̇|2 = X1 • X1 u̇2
1 + 2X1 • X2 u̇1u̇2 + X2 • X2 u̇2

2

For i , j = 1, 2 the Riemannian Metric is is given by the matrix function

gij(u) = Xi (u) • Xj(u)

Evidently, gij(u) is a smoothly varying, symmetric and positive definite.



12. Induced Riemannian Metric. -

Thus |γ̇(t)|2 =
2∑

i=1

2∑
j=1

gij(u(t)) u̇i (t) u̇j(t).

The length of the curve on the surface is determined by its velocity in the
coordinate patch u̇(t) and the metric gij(u).
A vector field on the surface is also determined by functions in U using
the basis. Thus if V and W are tangent vector fields, they may be
written

V (u) = v1(u)X1(u)+v2(u)X2(u), W (u) = w1(u)X1(u)+w2(u)X2(u)

The R3 dot product can also be expressed by the metric. Thus

V •W = 〈V ,W 〉 =
2∑

i ,j=1

gij v i w j .

where 〈·, ·〉 is an inner product on TpM that varies smoothly on M. This
Riemannian metric is also called the First Fundamental Form.



13. Angle and Area via the Riemannian Metric.

If V and W are nonvanishing vector fields on M then their angle
α = ∠(V ,W ) satisfies

cosα =
〈V ,W 〉
|V | |V |

which depends on coordinates of the vector fields and the metric.
If D ⊂ U is a piecewise smooth subdomain in the patch, the area if
X (D) ⊂ M is also determined by the metric

A(X (D)) =

∫
D
|X1 × X2| du1 du2 =

∫
D

√
det(gij(u)) du1 du2

since if β = ∠(X1,X2) then

|X1 × X2|2 = sin2 β |X1|2 |X2|2 = (1− cos2 β) |X1|2 |X2|2

= |X1|2 |X2|2 − (X1 • X2)
2 = g11g22 − g2

12.



14. Example in Local Coordinates. -

For the graph G2 = {(x , y , z) ∈ R3 : z = f (x , y) and (x , y) ∈ U } take
the patch X (u1, u2) = (u1, u2, f (u1, u2)).
The metric components are gij = Xi • Xj so using (1),(

g11 g12

g21 g22

)
=

(
1 + f 2

1 f1f2
f1f2 1 + f 2

2

)

where fi =
∂f

∂ui
. Thus gives the usual formula for area

det(gij) = 1 + f 2
1 + f 2

2

so

A(X (D)) =

∫
D

√
1 + f 2

1 + f 2
2 du1 du2.



15. Abstract Riemannian Manifold.

If we endow an abstract differentiable manifold Mn with a Riemannian
Metric, a smoothly varying inner product on each tangent space that is
consistently defined on overlapping coordinate patches, the resulting
object is a Riemannian Manifold.

Question: Are there Riemannian manifolds that do not arise as
submanifolds of Euclidean space with the induced differential structure
and Riemannian metric?
Answer: No. (Provided we allow big codimension.)

Theorem (Nash’s Isometric Immersion Theorem.)

Let Mn be an abstract, smooth Riemannian manifold of dimension n.
Then Mn is isometric to a smooth immersed submanifold W n ⊂ RN with
induced Riemannian metric provided that N ≥ n2 + 10n + 3.

John Nash had to invent some heavy duty PDE’s (the Nash Implicit
Function Theorem) to solve Xi • Xj = gij for X .



16. Tensorial Nature of the Metric.

What is obvious when we think of a regular surface M ⊂ R3 is that
regardless of what coordinate system we use in the neighborhood of
P ∈ M, the inner product between two vectors, or the area of a domain
or the length of the curve is the same because they are expressions of the
Euclidean values. e.g., if we compute vectors and metrics in the U or the
Ũ coordinate systems near P,

2∑
i ,j=1

gij(u) v i (u) w j(u) = V •W =
2∑

i ,j=1

g̃ij(ũ) ṽ i (ũ) w̃ j(ũ).

where points ũ = ũ(u) correspond under the transition function.

This also holds true in an abstract Riemanniam manifold. That is
because the vector fields and the first fundamental form are tensors.
Their transformations under change of coordinates exactly compensate to
keep geometric quantities invariant under change of coordinate.



17. Intrinsic Geometry.

Geometric quantities determined by the metric are called intrinsic. A
diffeomorphism between two abstract Riemanniam manifolds is called an
isometry if it preserves lengths of curves, hence all intrinsic quantities.
Equivalently, the Riemannian metrics are preserved. Thus if

f : (Mn, g) → (M̃n, g̃)

is an isometry, then f : Mn → M̃n is a diffeomorphism and f ∗g̃ = g
which means that for every vector fields V ,W on M and at every point
P ∈ M,

g(V (u),W (u))u = g̃(dfu(V (u)), dfu(V (u)))ũ

where dfu : TX (u) → TũM̃ is the differential, ũ = ũ(u) correspond under
the transition map and where we have written the first fundamental form
g(V ,W ).

WARNING: funtional analysts and geometric group theorists define
“isometry” in a slightly different way.



18. Extrinsic Geometry.

Extrinsic Geometry deals with how M sits in its ambient space.

How to measure the shape of a regular surface M ⊂ R3? Suppose that
e1 and e2 are orthonormal tangent vectors at P ∈ M and e3 is a unit
vector perpendicular to TPM. Then near P, the surface may be
parameterized as the graph over its tangent plane, where f (u1, u2) is the
“height” above the tangent plane

X (u1, u2) = P + u1e1 + u2e2 + f (u1, u2)e3. (2)

So f (0) = 0 and Df (0) = 0. The Hessian of f at 0 gives the shape
operator at P. It is also called the Second Fundamental Form.

hij(P) =
∂2 f

∂ui ∂uj
(0)

The Mean Curvature and Gaussian Curvature at P are

H(P) =
1

2
tr(hij(P)), K (P) = det(hij(P)).



19. Sphere Example.

The sphere about zero of radius r > 0 is an example

S2
r = {(x , y , z) ∈ R3 : x2 + y2 + z2 = r2}.

Let P = (0, 0,−r) be the south pole. By a rotation (an isometry of R3),
any point of S2

r can be moved to P with the surface coinciding. Thus the
computation of H(P) and K (P) will be the same at all points of S2

r . If
e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1), the height function of (2)
near zero is given by

f (u1, u2) = r −
√

r2 − u2
1 − u2

2 .

The Hessian is

∂2f

∂ui uj
(u) =


r2−u2

2

(r2−u2
1−u2

2)
3/2

−u1u2

(r2−u2
1−u2

2)
3/2

−u1u2u2
2

(r2−u2
1−u2

2)
3/2

r2−u2
1

(r2−u2
1−u2

2)
3/2


Thus the second fundamental form at P is

hij(P) = fij(0) =

(
1
r 0
0 1

r

)
so H(P) =

1

r
and K (P) =

1

r2



20. Graph Example.

If X (u1, u2) = (u1, u2, f (u1, u2)), by correcting for the slope at different
points one finds for all (u1, u2) ∈ U,

H(u1, u2) =

(
1 + f 2

2

)
f11 − 2f1 f2 f12 +

(
1 + f 2

1

)
f22

2
(
1 + f 2

1 + f 2
2

)3/2
,

K (u1, u2) =
f11 f22 − f 2

12(
1 + f 2

1 + f 2
2

)2 .



21. The Plane and Cylinder are Isometric.

One imagines that one can roll up a piece of paper in R3 without
changing lengths of curves in the surface. Thus the plane and the
cylinder are locally isometric. Let us check by computing the Riemannian
metrics at corresponding points. For any (u1, u2) ∈ R2 the plane is
parameterized by

X (u1, u2) = (u1, u2, 0)
so X1 = (1, 0, 0), X2 = (0, 1, 0) and so for the plane

gij =

(
X1 • X1 X1 • X2

X2 • X1 X2 • X2

)
=

(
1 0
0 1

)
.

The cylinder Z2 = {(x , y , z) : y2 + z2 = 1} may be parameterized by
Z (u1, u2) = (u1, cos u2, sin u2). so Z1 = (1, 0, 0),

Z2 = (0,− sin u2, cos u2) and so for the cylinder

gij =

(
Z1 • Z1 Z1 • Z2

Z2 • Z1 Z2 • Z2

)
=

(
1 0
0 1

)
.

The map f : X (u1, u2) 7→ Y (u1, u2) is an isometry because the metrics
agree: f preserves lengths of curves.



22. Caps of Spheres are Not Rigid.

By manipulating half of a rubber ball that has been cut through its
equator, one sees that the cap can be deformed into a football shape
without distorting intrinsic lengths of curves and angles of vectors. The
spherical cap is deformable through isometries: it is not rigid. (Rigid
means that any isometry has to be a rigid motion of R3: composed of
rotations, translations or reflections.)

It turns out by Herglotz’s Theorem, all C3 closed K > 0 surfaces (hence
surfaces of convex bodies which are simply connected) are rigid.



23. Gauss’s Excellent Theorem.

So far, the formula for the Gauss Curvature has been given in terms of
the second fundamental form and thus may depend on the extrinsic
geometry of the surface. However, Gauss discovered a formula that he
deemed excellent:

Theorem (Gauss’s Theorema Egregium 1828)

Let M2 ⊂ R3 be a smooth regular surface. Then the Gauss Curvature
may be computed intrinsically from the metric and its first and second
derivatives.

In other words, the Gauss Curvature coincides at corresponding points of
isometric surfaces.

Thus the Gauss Curvature is an invariant that can be computed in
abstract Riemannian manifolds.

The Latin word has the same root as “egregious” or “gregarious.”



24. Isothermal Coordinates.

By a theorem of Korn and Lichtenstein, near every P ∈ M, a smooth
regular surface, there is a coordinate chart in which the metric takes a
nice form: |X1|2 = g11 = φ2 = g22 = |X2|2 and X1 • X2 = g12 = g21 = 0.

ds2 = φ(u)2 (du2
1 + du2

2)

φ2 is called the conformal factor. The rectilinear coordinate grid in U is
locally streched by the factor φ(u) > 0. X preserves angles.

In these coordinates, the Gauss curvature takes the form

K (u) = − 1

φ(u)2
∆ log(φ) where ∆ =

∂2

∂u1
2

+
∂2

∂u2
2

is the U Laplacian.



25. Stereographic Projection of the Sphere.

Figure: Stereographic Projection.
P = σ(u1, u2) is the point on the
sphere corresponding to
(u1, u2) ∈ R2.

For the unit sphere S2 centered at the
origin, imagine a line through the south
pole Q and some other point P ∈ S2.
This line crosses the z = 0 plane at
some coordinate x = u1 and y = u2.
Then we can express P in terms of
(u1, u2). Thus σ : U = R2 → S2 − {Q}
is a coordinate chart for the sphere
called stereographic coordinates.
σ(u1, u2) =(

2u1

1+u2
1+u2

2
, 2u2

1+u2
1+u2

2
,

1−u2
1−u2

2

1+u2
1+u2

2

)



26. Stereographic Projection of the Sphere.-

The tangent vectors for stereographic projection are

X1 =

(
2−2u2

1+2u2
2

(1+u2
1+u2

2)
2 ,− 4u1u2

(1+u2
1+u2

2)
2 ,− 4u1

(1+u2
1+u2

2)
2

)
,

X2 =

(
− 4u1u2

(1+u2
1+u2

2)
2 ,

2+2u2
1−2u2

2

(1+u2
1+u2

2)
2 ,− 4u2

(1+u2
1+u2

2)
2

)
so that (u1, u2) are isothermal coordinates

X1 • X2 = 0, φ(u1, u2) =
√

X1 • X1 =
√

X2 • X2 =
2

1 + u2
1 + u2

2

.

Thus

K = − 1

φ2 ∆ log(φ) = 1.



27. Complex Notation for Isothermal Charts.

Figure: Transition between two isothermal coordinate charts.

Let two overlapping isothermal charts be given, σ : U → S , σ̃ : Ũ → S
with corresponding conformal factors

φ(z)2 |dz |2 = σ∗
(
ds2
)
, φ̃(z̃)2 |dz̃ |2 = σ̃∗

(
ds2
)
.

Written in complex notation, z = x + iy so |dz |2 = dx2 + dy2.



28. Intrinsic Geometry.-

The induced metrics are consistently defined. The transition function
g : U → Ũ given by g = σ̃−1 ◦ σ turns out to be holomorphic (if
orientation preserved) since angles are preserved. The transition identifies
local metrics by a change of variables

φ(z)2 |dz |2 = φ̃(g(z))2
∣∣∣∣dg

dz

∣∣∣∣2 |dz |2 = g∗
(
φ̃(z̃)2 |dz̃ |2

)
.

Thus, oriented surfaces with a Riemannian metric have the structure of a
Riemann Surface.

We don’t need to embed the surface in Euclidean Space as long as we
have a cover S by charts and define the INTRINSIC METRIC of S
chartwise in a consistent way.



29. Intrinsic Metric and Distance.

The Riemannian metric gives length and angles of vectors and lengths of
curves. If γ : [α, β] → S then γ(t) = σ(u(t)) so in the conformal metric,

L(γ) =

∫ β

α
φ
(
u(t)

)
|u̇(t)| dt.

The Riemannian metric induces a distance function on S . If P,Q ∈ S ,

d(P,Q) = inf

{
L(γ) :

γ : [α, β] → S is piecewise C 1,
γ(α) = P, γ(β) = Q

}

Theorem

(S , d) is a metric space.



30. Hyperbolic Space invented to show independence of 5th Postulate.

Euclid’s Postulates are the following:

1 any two points may be joined by a line segment;

2 any line segment may be extended to form a line;

3 a circle may be drawn with any given center and distance;

4 any two right angles are equal;

5 (Playfair’s Version) Given any line m and a point p, there is a
unique line through p and parallel to m.



31. Saccheri’s Axiom. Example of Gauss, Bolyai & Lobachevski.

Figure: m′ and m′′ are parallels to
m through P. This is Poincaré’s
model of the Hyperbolic Plane H2.
The space is the unit disk. Lines are
diameters or arcs of circles that are
perpendicular to the boundary
circle.

In letters found after his death, Gauss
had already realized in 1816 that there
are geometries in which the Fifth
Postulate fails. J. Bolyai and
N. Lobachevski independently proved it
in 1823 and 1826 by essentially
constructing Poincaré’s model. They
assumed an axiom of Saccheri, who
tried to reach a contradiction from it to
prove the Fifth postulate.

5 Given any line m and a point p not
in m, there are at least two lines
through p and parallel to m.

This axiom is also known as the
hyperbolic axiom. In 1854, Riemann
showed a consistent geometry may also
be constructed assuming instead that
no lines are parallel.



32. The metric of the Poincaré’s Model. H2 = (D, ds2).

Let D = {z ∈ C : |z | < 1} be the unit disk. The Poincaré metric is

ds2 = φ(z)2 |dz |2 where φ(z) =
2

1− |z |2
.

Thus

K = − 1

φ2 ∆ log(φ) = −1.

Theorem (Hilbert, 1901)

There is no C 2 isometric immersion σ : H2 → E3.

The metric is invariant under rotation about the origin z 7→ e iαz (α ∈ R)
and reflection z 7→ z̄ . It is also invariant under the holomorphic self-maps
of D. Such maps f : D → D that fix the circle and map p ∈ D to 0 have
the form

w = f (z) =
e iα(z − p)

1− p̄z



33. The metric of the Poincaré’s Model.

They are isometries of the Poincaré plane because the pulled-back metric

f ∗(ds2) = φ(w)2|dw |2

=
4(

1− |z−p|2
|1−p̄z|2

)2

(1− |p|2)2|dz |2

|1− p̄z |4

=
4(1− |p|2)2|dz |2

(|1− p̄z |2 − |z − p|2)2

=
4(1− |p|2)2|dz |2(

(1− p̄z)(1− pz̄)− (z − p)(z̄ − p̄)
)2

=
4(1− |p|2)2|dz |2(

1− pz̄ − p̄z + |p|2|z |2 − |z |2 + p̄z + pz̄ − |p|2
)2

=
4(1− |p|2)2|dz |2

(1− |p|2)2(1− |z |2)2
=

4|dz |2

(1− |z |2)2
= φ(z)2|dz |2.



34. Geodesics.

A geodesic is a curve that locally minimizes the length. A Calculus of
Variations argument shows geodesics satisfy a 2nd order ODE.

If ζ : [a, b] → U is minimizing in an isothermic patch, and η : [a, b] → C
is a variation such that η(a) = η(b) = 0, then the length L (σ(ζ + εη)) is
least when ε = 0 so

0 =
d

dε

∣∣∣∣
ε=0

L(ζ + εη) =
d

dε

∣∣∣∣
ε=0

∫ b

a
φ(ζ + εη)

∣∣∣ζ̇(t) + εη̇(t)
∣∣∣ dt

=

(∫ b

a
∇φ(ζ + εη) • η|ζ̇ + εη̇|+ φ(ζ + εη)

(ζ̇ + εη̇) • η̇
|ζ̇ + εη̇|

dt

)∣∣∣∣∣
ε=0

=

∫ b

a

(
∇φ(ζ)|ζ̇| − d

dt

[
φ(ζ)

ζ̇

|ζ̇|

])
• η



35. The geodesic equation.

Since η is arbitrary, we deduce the Euler-Lagrange Equations. The
geodesic satisfies the 2nd order ODE system

d

dt

[
φ(ζ)

ζ̇

|ζ̇|

]
−∇φ(ζ)|ζ̇| = 0. (3)

Combining ODE existence theorems with some geometry one gets

Theorem

For every P ∈ S there is a neighborhood U such that if Q1,Q2 ∈ U there
there is a unique smooth distance realizing curve ζ : [α, β] → S from Q1

to Q2 such that d(Q1,Q2) = L(ζ), ζ([α, β]) ⊂ U and ζ satisfies (3).
Moreover, solutions of (3) are locally distance realizing.



36. Geodesics in H2 example.

For example, in H2, ζ(t) = (t, 0) is geodesic. |ζ̇| = 1,

φ
(
ζ(t)

)
=

2

1− t2
, ∇φ =

4(u, v)

(1− u2 − v2)2
.

Substituting
d

dt

[
2(1, 0)

1− t2

]
− 4(t, 0)

(1− t2)2
= 0.



37. Geodesic equation for unit speed curves.

The length is independent of parametrization. Thus we may convert to
arclength

s =

∫ t

α
φ
(
ζ(t)

)
|ζ̇(t)| dt

so

φ|ζ̇| d
ds

=
d

dt
, φζ ′ =

ζ̇

|ζ̇|
,

writing “ ′ ” for arclength derivatives.

d

ds

[
φ(ζ)

ζ̇

|ζ̇|

]
−∇ lnφ(ζ)

or
ζ ′′ + 2(∇ lnφ • ζ ′)ζ ′ − |ζ ′|2∇ lnφ = 0. (4)

For example, in E2, φ ≡ 1 so ζ ′′ = 0 and ζ(s) = c0 + c1s: geodesics are
straight lines. Note that any solution of (4) moves at a constant speed
because φ(ζ)|ζ ′| remains constant.



38. Completeness.

We shall assume our surfaces are complete. The geodesic equation is

ζ ′′ + 2(∇ lnφ • ζ ′)ζ ′ − |ζ ′|2∇ lnφ = 0. (5)

S is complete if solutions of the initial value problem for (5) can be
infinitely extended.

Theorem (Hopf - Rinow)

S is complete if and only if (S , d) with the induced distance is a
complete metric space. Completeness implies that for all Q1,Q2 ∈ S
there there is a distance realizing geodesic ζ : [α, β] → S from Q1 to Q2

such that d(Q1,Q2) = L(ζ).



39. Polar Coordinates and the Exponential Map.

Figure: Exponential Map.

The solvability, uniqueness and
smooth dependence of the initial
value problem for (5) lets us
define the exponential map

expP : TpM → M.

Fix P ∈ M. The map takes a
vector V ∈ TPM with length r
and maps it to the endpoint of a

geodesic of length r which starts at P
and heads in the direction V . (So if
r = φ(p)|V |, let ζ(t) be the solution of
the initial value problem for (5) with
starting point ζ(0) = P and direction
ζ ′(0) = V

r . Define expP(V ) = ζ(r).)

The exponential map gives polar
coordinates (also called normal
coordinates) near P. If M is a surface
then a unit vector U(θ) ∈ TPM is
determined by its angle θ. Thus any
vector V ∈ TPM can be written
V = rU(θ) for some unit vector U(θ)
and scalar r ≥ 0. The coordinate chart
near P is

σ(r , θ) = expP

(
rU(θ)

)
.



40. The Metric in Polar Coordinates.

The metric of M in polar coordinates turns out to be

ds2 = dr2 + J(r , θ)2 dθ (6)

where J ≥ 0 in U .
(The fact that circles of radius r about P cross the geodesic rays
emanating from P orthogonally, hence no cross term, is a lemma of
Gauss.)

In these coordinates, the Gauss Curvature is

K = −Jrr

J
.

It follows that the expansion of the area growth of the r -ball near r = 0
has the Euclidean value with a correction due to the Gauss curvature

A
(
B(0, r)

)
= πr2

(
1− K (P) r2

12
+ · · ·

)



41. Polar Coordinates in H2 example.

For example, if P = 0 in H2 then the length of the segment from (0, 0)
to (t, 0) in H2 is

ρ =

∫ t

0

2 dt

1− t2
= ln

(
1 + t

1− t

)
⇐⇒ t = tanh

(ρ
2

)
.

The exponential map takes (ρ, θ) in polar coordinates of E2 = TPH2 to
(t, θ) ∈ H2. Pulling back the Poincaré metric

dρ2+sinh2ρ dθ2 =
sech4

(ρ
2

)
dρ2 + 4 tanh2

(ρ
2

)
dθ2(

1− tanh2
(ρ

2

))2 = exp∗P

(
4(dt2 + t2dθ2)

(1− t2)2

)

Thus

K = −Jrr

J
= − 1

sinh ρ

∂2

∂ρ2
sinh ρ = −1.



42. Area of a disk. Length of a circle.

In polar coordinates, H2 = (R2, dρ2 + sinh2ρ dθ2 ). Let B(0, r) be the
disk about the origin of radius r (measured in H2.). Then

L
(
∂B(0, r)

)
=

∫ 2π

0
sinh r dθ = 2π sinh r ,

A
(
B(0, r)

)
=

∫ 2π

0

∫ r

0
sinh r dr dθ = 2π(cosh r − 1).

The Taylor expansion near r = 0 gives

A
(
B(0, r)

)
= πr2

(
1 +

r2

12
+ · · ·

)
= πr2

(
1− K (0) r2

12
+ · · ·

)
thus K (0) = −1.



43. Polar coordinates for general surfaces.

If S is complete, then expp : TPS → S is onto. Let e1, e2 ∈ TpS be
orthonormal vectors. Let U(θ) = cos(θ)e1 + sin(θ)e2. Consider the unit
speed geodesic γ(t, θ) = expP(tU(θ)) from P in the U(θ) dierection. For
each r > 0 let Θ(r) ∈ S1 be the set of directions θ such that γ(•, θ) is
minimizing over [0, r ].

Thus if r1 < r2 we have Θ(r2) ⊂ Θ(r1). Let U = ∪r>0rU(Θ(r)). It turns
out that expP(U) covers all of S except for a set of measure zero.



44. Jacobi Equation.

The variation vector field measures the spread of geodesics as they are
rotated about P ∈ S .

V =
d

dθ
γ(t, θ) (7)

is perpendicular to γ̇(t, θ) and has length J(t, θ) as in the metric in polar
coordinates (6). By differentiating the geodesic equation (5) with respect
to θ one finds the Jacobi Equation

Jss(s, θ) + K
(
γ(s, θ)

)
J(s, θ) = 0 (8)

with initial conditions, J(0, θ) = 0 and Js(0, θ) = 1.

For example, in H2, J(s, θ) = sinh s and K ≡ −1.
For E2, J(s, θ) = s and K ≡ 0.



45. Harmonic functions.

Let ds2 = φ(z)2 |dz |2 be the metric in an isothermal coordinate patch.
The intrinsic area form, gradient and Laplacian are given by the formulas

dA = φ2 dx dy ; |∇u|2 =
u2
x + u2

y

φ2
; ∆u =

uxx + uyy

φ2
=

4uzz̄

φ2
.

Let u ∈ C 1(Ω) be a function on a domain Ω ⊂ S . Then the energy or
Dirichlet integral is invariant under conformal change of metric∫

Ω
|∇u|2 dA =

∫
Ω

u2
x + u2

y dx dy .

A function is harmonic if ∆u = 0 and subharmonic if ∆u ≥ 0 (at least
weakly.) These notions agree regardless of conformal metric φ2 |dz |2.



46. Parabolicity.

We seek generalizations of the Riemann mapping theorem to surfaces.

Theorem (Riemann Mapping Theorem)

Let Ω ⊂ R2 be a simply connected open set that is not the whole plane.
Then there is an analytic, one-to-one mapping onto the disk f : Ω → D.

A noncompact, simply connected surface S is said to be parabolic if it is
conformally equivalent to the plane. That is, there is a global isothermal
coordinate chart σ : C → S . Otherwise the surface is called hyperbolic.
The sphere S2 is compact, so it is neither parabolic nor hyperbolic.

Theorem (Koebe’s Uniformization Theorem)

Let S be a simply connected Riemann Surface. Then S is conformally
equivalent to the disk, the plane or to the sphere.

Conceivably, the topological disk could have many conformal structures,
but the uniformization theorem tells us there are only two. The
topological sphere has only one conformal structure.



47. Characterizing hyperbolic manifolds.

For each p ∈ S , the positive Green’s function z 7→ g(z , p) is harmonic for
z ∈ S − {p}, g(z , p) > 0, infz g(z , p) = 0 and in a isothermal patch
around p, g(z , p) + ln |z − p| has a harmonic extension to a
neighborhood of p (so g(z , p) →∞ as z → p.)

Theorem

Let S be a simply connected noncompact Riemann surface. Then the
following are equivalent.

S is hyperbolic.

S has a positive Green’s function.

S has a negative nonconstant subharmonic function.

S has a bounded nonconstant harmonic function.

e. g., u = ax + by is a bounded harmonic function on D hence on H2,
but there are no bounded harmonic functions on E2 by Liouville’s
Theorem.



48. A theorem relating curvature and function theory.

A surface S is said to have finite total curvature if∫
S
|K | dA <∞.

Theorem (Blanc & Fiala, Huber)

Let S be a noncompact, complete surface with finite total curvature.
Then S is conformally equivalent to a closed Riemann surface of genus g
with finitely many punctures Σg − {p1, . . . , pk}.

For example, E2 has zero total curvature and is conformal to S2 − {Q}
via stereographic projection.

To illustrate something of the ways of geometric analysis, we sketch the
proof for the simply connected case.



49. Growth of a geodesic circle.

Lemma

Assume that S is a complete, noncompact, simply connected surface
with finite total curvature ∫

S
|K | dA = C <∞.

Then
L
(
∂B(p, r)

)
≤ (2π + C )r .

Proof Idea. By the Jacobi equation (7),

Jr (r , θ)− 1 = Jr (r , θ)− Jr (0, θ)

=

∫ r

0
Jrr (r , θ) dr

= −
∫ r

0
K
(
γ(r , θ)

)
J(r , θ) dr .



50. Growth of a geodesic circle proof.

The length L(r) = L
(
∂B(p, r)

)
grows at a rate

dL

dr
= lim

h→0+

L(r + h)− L(r)

h

= lim
h→0+

1

h

(∫
Θ(r+h)

J(r + h, θ) dθ −
∫

Θ(r)
J(r , θ) dθ

)

= lim
h→0+

(∫
Θ(r+h)

J(r + h, θ)− J(r , θ)

h
dθ − 1

h

∫
Θ(r)−Θ(r+h)

J(r , θ) dθ

)

≤
∫

Θ(r)
Jr (r , θ) dθ

=

∫
Θ(r)

(
1−

∫ r

0
K
(
γ(r , θ)

)
J(r , θ) dr

)
dθ

≤ 2π +

∫ r

0

∫
Θ(r)

∣∣K(γ(r , θ))∣∣ J(r , θ) dθ dr

= 2π +

∫
B(P,r)

|K | dA ≤ 2π + C .



51. Blanc & Fiala’s theorem.

Theorem (Blanc & Fiala)

Let S be a complete, noncompact, simply connected Riemann surface of
finite total curvature. Then S is parabolic.

Proof idea. Suppose not. Then S has a global isothermal chart
σ : D → S . Then u = − ln |z | is a positive Green’s function on S . Let
ε > 0 and K ⊂ D− B(0, ε) be any compact domain. On the one hand,
the energy is uniformly bounded

E(K ) =

∫
K

u2
x + u2

y dx dy ≤ −2π ln ε.

This estimate is done in the background D metric. But energy is
conformally invariant, so it will hold in the surface metric also.



52. Blanc & Fiala’s theorem. -

Indeed, let R = sup{|z | : z ∈ K} < 1 and A = {z ∈ D : ε ≤ |z | ≤ R} be
an annulus containing K . Using the fact that u > 0 and ur < 0 on K , by
integrating by parts,

E(K ) ≤ E(A) = −
∫
A

u∆0u dx dy +

∮
|z|=ε

u
∂u

∂n
+

∮
|z|=R

u
∂u

∂n

≤ 0−
∮
|z|=ε

ln ε

ε
+ 0

≤ −2π ln ε

since on |z | = ε, u = − ln ε and ur = −1
ε and L({z : |z | = ε}) = 2πε.



53. Blanc & Fiala’s theorem. - -

On the other hand, bounded total curvature will imply that the energy
will grow to infinity. For the remainder of the argument, work in intrinsic
polar coordinates. Let B(0, r) denote the intrinsic ball for r ≥ 1 and

E(r) =

∫
B(0,r)−B(0,1)

|Du|2 dA =

∫ r

1

∫
∂B(0,r)

|Du|2 ds dr

where s is length along ∂B(0, r). By the Schwartz inequality,

L(r)
dE
dr

=

∫
∂B(0,r)

ds

∫
∂B(0,r)

|Du|2 ds ≥

(∫
∂B(0,r)

|Du| ds

)2

≥

(∮
∂B(0,r)

∂u

∂n

)2

=

(∫
B(0,r)−B(0,δ)

∆u dA−
∮

∂B(0,δ)

∂u

∂n

)2

= c0

for any fixed δ ∈ (0, 1] where c0 > 0 is independent of r .
In fact, c0 → 4π2 as δ → 0.



54. Blanc & Fiala’s theorem. - - -

Now, using the length lemma,

dE
dr

≥ c0

(2π + C )r
.

Integrating, this says

E(r) ≥ c0 ln r

(2π + C )
→∞ as r →∞.

This is a contradiction because the energy is invariant under conformal
change and is uniformly bounded.

To understand the argument, try using it to prove E2 is parabolic!



55. Application to harmonic maps.

A harmonic map locally minimizes energy of a map between surfaces,
generalizing harmonic functions and geodesics.
If h : (S1, φ(z)2 |dz |2) → (S2, ψ(w)2 |dw |2) is harmonic, then it satisfies
the PDE system

hzz̄ + 2
ψw (h)

ψ(h)
hz hz̄ = 0.

Theorem

If f : S̃ → S1 is a conformal diffeomorphism and h : S1 → S2 is harmonic,
then h ◦ f : S̃ → S2 is harmonic.



56. Existence of harmonic diffeomorphisms.

Theorem (Treibergs 1986)

Let I ⊂ ∂D be any closed set with at least three distinct points and
Conv(I) its convex hull in H2, then there is a complete, spacelike entire
constant mean curvature surface S in Minkowski Space such that the
Gauss map G : S → Conv(I) is a harmonic diffeomorphism.

Minkowski Space is E2,1 = (R3, dx2 + dy2 − dz2).
An entire, spacelike surface S ⊂ E2,1 is the graph of a function
S =

{(
x , y , u(x , y)

)
: (x , y) ∈ R2

}
such that u2

x + u2
y < 1.

The Gauss map is the map given by the future-pointing unit normal

G =
(ux , uy , 1)√
1− u2

x − u2
y

: S → H.

The hyperboloid H = {(x , y , x) : x2 + y2 − z2 = −1, z > 0} consists of
all future-pointing vectors of length −1.
The hyperboloid model (H, dx2 + dy2 − dz2) is isometric to H2.



57. Harmonic diffeomorphisms Conv(I).

Figure: Harmonic diffeomorphisms



58. Harmonic diffeomorphisms to ideal polygons.

Corollary

Let I ⊂ ∂B be a closed set with at least three points.

If I is finite, there is a harmonic diffeomorphism

h : C → Conv(I).

If I has nonempty interior, then there is a harmonic diffeomorphism

h : B → Conv(I).

Since S is convex, its total curvature is −A
(
G(S)

)
= π(2− ]I) by the

Gauss-Bonnet Theorem in H2. By Blanc-Fiala’s Theorem, S is conformal
to the plane if I is finite.

If I has nonempty interior then one can construct a nonconstant
bounded harmonic function on S so it is conformal to the disk.



Thanks!




