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4. Outline.

Euler Lagrange Equations for Constrained Problems
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Outline of the Direct Method.
Examples of failure of the Direct Method.

Solve in a special case: Poisson’s Minimization Problem.

Cast the minimization problem in Hilbert Space.
Coercivity of the functional.
Continuity of the functional.
Differentiability of the functional.
Convexity of the functional and uniqueness.

Regularity



5. First Example of a Variational Problem: Shortest Length.

To find the shortest curve γ(t) = (t, u(t)) in the Euclidean plane from
(a, y1) to (b, y2) we seek the function u ∈ A, the admissible set

A = {w ∈ C1([a, b]) : w(a) = y1, w(b) = y2}

that minimizes the length integral

L(u) =

∫
Ω

√
1 + u̇2(t) dt.

We saw that the minimizing curve would satisfy the Euler Equation

d

dt

(
u̇√

1 + u̇2

)
= 0

whose solution is u(t) = c1t + c2, a straight line.



6. Variational Problems with Constraints.

If we assume also that the curve
from (a, y1) to (b, y2) enclose a
fixed area j0 between a ≤ x ≤ b and
between γ and the x-axis, then the
admissible set becomes curves with
the given area and now seek u ∈ A′
that minimizes the length integral

L(u) =
∫
Ω

√
1 + u̇2(t) dt.

A′ =

w ∈ C1 :
w(a) = y1,
w(b) = y2,∫
Ω u(t)dt = j0


This is the Isoperimetric Problem.
We’ll see that the corresponding
differential equations, the
Euler-Lagrange equations say that
the curve has constant curvature,
thus consists of an arc of a circle.

But this may be unsolvable! For a
given choice of endpoints and j0,
there may not be a circular arc
γ(t) = (t, u(t)) that connects the
endpoints and encloses an area j0.



7. Formulation of the Euler Lagrange Equations.

More generally, let Ω ⊂ Rn be a bounded domain with smooth boundary,
f (x , u, p), g(x , u, p) ∈ C2(Ω× R× Rn) and φ ∈ C1(Ω). Suppose that we
seek to find u ∈ A = {x ∈ C1(Ω) : w = φ on ∂Ω} that achieves the
extremum of the integral

I (u) =

∫
Ω

f (x , u(x),Du(x)) dx

subject to the constraint that

J(u) =

∫
Ω

g(x , u(x),Du(x)) dx = j0

takes a prescribed value.



8. Formulation of the Euler Lagrange Equations.-

Choose two functions ηi , η2 ∈ C1(Ω) such that

η1(z) = η2(z) = 0 for all z ∈ ∂Ω.

Then, assuming that u(x) is a solution of the constrained optimization
problem, consider the two-parameter variation

U(x , ε1, ε2) = u(x) + ε1η1(x) + ε2η2(x)

which satisfies U = φ on ∂Ω so U ∈ A. Substitute U

I (ε1, ε2) =

∫
Ω

f (x ,U,DU) dx

J(ε1, ε2) =

∫
Ω

g(x ,U,DU) dx

I is extremized in R2 when ε1 = ε2 = 0 subject to the constraint

J(ε1, ε2) = j0.



9. Formulation of the Euler Lagrange Equations.- -

Using Lagrange Multipliers, there is a constant λ so that solution is the
critical point of the Lagrange function

L(ε1, ε2) = I (ε1, ε2) + λJ(ε1, ε2) =

∫
Ω

h(x ,U,DU) dx

where
h(x ,U,DU) = f (x ,U,DU) + λg(x ,U,DU).

The extremum satisfies

∂L
∂ε1

=
∂L
∂ε2

= 0 when ε1 = ε2 = 0.

But for i = 1, 2,

∂L
∂εi

=

∫
Ω

 ∂h

∂U

∂U

∂εi
+

n∑
j=1

∂h

∂pj

∂2U

∂εi ∂xj

 =

∫
Ω

 ∂h

∂U
ηi +

n∑
j=1

∂h

∂pj

∂ηi

∂xj





10. Formulation of the Euler Lagrange Equations.- - -

At the critical point when εi = 0 for i = 1, 2 so U = u,

∂L
∂εi

∣∣∣∣
η1=ε2=0

=

∫
Ω

{
∂h

∂u
ηi + Dph • Dxηi

}
dx = 0,

which is the weak form of the Euler Lagrange equations. Integrating the
second term by parts (assuming it is OK to do so), using ηi = 0 on the
boundary ∫

Ω
ηi

{
∂h

∂u
− div (Dph)

}
dt = 0.

As both ηi are arbitrary, we obtain the Euler-Lagrange equations

∂h

∂u
− div (Dph) = 0.



11. Application to the Classical Isoperimetric Problem.

In this case,
h = f + λg =

√
1 + u̇2 + λu.

Thus

0 =
∂h

∂u
− d

dt

(
∂h

∂u̇

)
= λ− d

dt

(
u̇√

1 + u̇2

)
= λ− ü

(1 + u̇2)3/2

= λ− κ

where κ is the curvature of the curve γ. Thus solutions of the E-L
equations are curves of constant curvature which are arcs of circles.



12. Riemann assumes the Dirichlet Principle.

The great strides of Riemann’s Thesis (1851) and memoir on Abelian
Functions (1857) relied on the statement that there exists a minimizer of
an electrostatics problem which he did not prove! Riemann had learned it
from Dirichlet’s lectures. On a surface, which he thought of as a thin
conducting sheet, he imagined the stationary electric current generated
by connecting arbitrary points of the surface with the poles of an electric
battery. The potential of such a current will be the solution of a
boundary value problem. The corresponding variational problem is to find
among all possible flows the one that produces the least quantity of heat.

(Dirichlet’s Principle)

Let G ⊂ R2 (or in a smooth surface) be a compact domain and
φ ∈ C(∂G ). Then there is u ∈ C1(G ) ∩ C(G ) that satisfies u = φ on ∂G
and minimizes the Dirichlet Integral

D[u] =

∫
G
|Du|2 dA.

Moreover, ∆u = 0 on G.



13. Weierstrass objects. Hilbert proves it.

Because D[u] ≥ 0 it was assumed that minimizers exist. Weierstrass
found the flaw in the argument and published his objections in 1869.

Dirichlet’s Principle became the stimulus of much work. Finally, Hilbert
proved the Dirichlet Principle in 1900 assuming appropriate smoothness.



14. Hilbert’s 19th and 20th problems.

Hilbert challenged mathematicians to solve what he considered to be the
most important problems of the 20th century in his address to the
International Congress of Mathematicians in Paris, 1900.

20th “Has not every variational problem a solution, provided certain
assumptions regarding the given boundary conditions are satisfied,
and provided also that if need be that the notion of solution be
suitably extended?”

19th “Are the solutions of regular problems in the Calculus of Variations
always necessarily analytic?”

These questions have stimulated enormous effort and now things are
much better understood. The existence and regularity theory for elliptic
PDE’s and variational problems is one of the greatest achievements of
20th century mathematics.



15. Variational Problem from Geometry: Yamabe Problem.

In 1960, Yamabe tried to prove the Poincaré Conjecture that every
smooth closed orientable simply connected three manifold M is the three
sphere using a variational method. He tried to find an Einstein metric
(Ric(g) = cg) where Ric is the Ricci curvature and c is a constant,
which would have to have constant sectional curvature in three
dimensions. Consider the functional on the space M of all smooth
Riemannian metrics on M. For g ∈M,

Q(g) =

∫
M Rg dµg(∫
M dµg

) n−2
n

where Rg = scalar curvature and µg = volume form for g . The Einstein
Metrics are maxi-min critical points. g0 is Einstein if it is critical so

Q(g0) = sup
g1∈M

inf
g∈Cg1

Q(g)

Cg1 = {ρg1 : ρ ∈ C∞(M) : ρ > 0} are all metrics conformal to g1.



16. Yamabe Problem-.

The “mini” part for n ≥ 3 is called the Yamabe Problem. For n = 2 this
is equivalent to the Uniformization Theorem: every closed surface carries
a constant curvature metric.

Theorem (Yamabe Problem.)

Let (Mn, g0) be an n ≥ 3 dimensional smooth compact Riemannian
manifold without boundary. Then there is ρ ∈ C∞(M) with ρ > 0 so that

Q(ρg0) = inf
g∈Cg0

Q(g).

Moreover, g̃ = ρg0 has constant scalar curvature Rg̃ .

The Yamabe Problem was resolved in steps taken by Yamabe (1960),
Trudinger (1974), Aubin (1976) and Schoen (1984).
The Poincaré Conjecture has since been practically resolved using Ricci
Flow by Hamilton and Perelman (2004).



17. Minimization Problem.

We illustrate with a simple minimization problem. Let Ω ⊂ Rn be a
connected bounded domain with smooth boundary. Let us assume that
f (x , u, p) ∈ C1(Ω× R× Rn). For u ∈ C1(Ω) we define the functional

F(u) =

∫
Ω

f
(
x , u(x),Du(x)

)
dx

If φ ∈ C1(Ω), then we define the set of admissible functions to be

A =
{
u ∈ C1(Ω) : u = φ on ∂Ω

}
.

The minimization problem is to find u0 ∈ A so that

F(u0) = I := inf
u∈A

F(u).



18. Poisson Minimization Problem.

Let us consider a specific example of energy minimization. Let Ω ⊂ Rn

be a bounded, connected domain with smooth boundary. Let ψ ∈ L2(Ω)
and φ ∈ C1(Ω). Let us consider the energy functional defined for u ∈ A

F(u) =
∫
Ω

1
2 |Du|2 + ψu dx .

For f (x , u, p) = 1
2 |p|

2 +ψu, the Euler equation is to find u ∈ A such that

0 = ∂f
∂u − div(Dpf ) = ψ − div(Du) in Ω.

This is Poisson’s Equation, usually written

∆u = ψ, in Ω;

u = φ, on ∂Ω.

A useful fact is that a solution of an elliptic PDE is gotten by minimizing
energy. Taking ψ = 0 gives Dirichlet’s Principle.
There are other methods to handle linear equations like this but we shall
use it to illustrate the direct method.



19. Poisson Minimization Problem.-

We sketch the proof of

Theorem (Poisson’s Minimization Problem.)

Let Ω ⊂ Rn be a bounded, connected domain with smooth boundary. Let
φ, ψ ∈ C∞(Ω). For u ∈ C 1(Ω), let

F(u) =
∫
Ω

1
2 |Du|2 + ψu dx .

Then there is a unique u0 ∈ C∞(Ω) with u0 = φ on ∂Ω such that

F(u0) = inf
u∈A′

F(u)

where A′ =
{
u ∈ C (Ω) ∩ C1(Ω) : u = φ on ∂Ω.)

}
. Also, ∆u0 = ψ in Ω.



20. Outline of the Direct Method.

To find a u0 that minimizes F(u) in A.

There may be problems with
these steps!

1 Choose a minimizing sequence {un} ⊂ A so that as n →∞,

F(un) → I = inf
u∈A

F(u).

F may not have a lower
bound.

2 Select a convergent subsequence

un′ → u0 ∈ A as n′ →∞.

{un} may not be compact.

3 Exchange limits

F(u0) = F
(

lim
n′→∞

un′

)
= lim

n′→∞
F(un′) = I.

(“≤” lower semi-continuity will do.)

F may not be
lower semi-continuous.
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21. Examples of Failure of Direct Method.

Let [0, π] ⊂ R1 and A = {u ∈ C1([0, π]) : u(0) = u(π) = 0}.
F is not bounded below: take

F(u) =
∫ π
0 u̇2 − 2u2 dx and un(x) = n sin x ∈ A.

But F(un) = −πn2

2 → −∞ as n →∞. (Also, un is unbounded.)

No convergent subsequence in minimizing sequence: take

F(u) =
∫ π
0

(
u̇2 − 1

)2
dx , un(x) =

√
1
n2 + π2

4 −
√

1
n2 +

(
x − π

2

)2

un(x) ∈ A and F(un) → 0 = infv∈AF(v) but every subsequence
converges to π

2 −
∣∣x − π

2

∣∣ which is not in A.

F is not lower semi-continuous: Let g(p) =

{
p2, if p 6= 0;

1, if p = 0.
. Take

F(u) =
∫ π
0 g(u̇) dx and un(x) = 1

n sin x → 0.

Then un(x) ∈ A and F(un) = π
2n2 → 0 = I as n →∞ but

π = F(0) = F (limn′→∞ un) > limn→∞F(un) = 0.



22. Hilbert Spaces. (It’s easier to prove existence if you enlarge the space!)

Let Ω ⊂ Rn be a bounded, connected domain with smooth boundary. Let

H1(Ω) :=

{
u ∈ L2(Ω) :

all distributional derivatives
exist and ∂u

∂xi
∈ L2(Ω) for all i .

}
H1 is chosen because it suits the energy in our example. By Serrin’s
Theorem, H1(Ω) is also the completion of C∞(Ω) under the norm

‖u‖2
H1 := ‖u‖2

L2 + ‖Du‖2
L2 .

Let H1
0(Ω) denote the completion under ‖ · ‖H1 of{

u ∈ C∞(Ω) : spt(u) ⊂ Ω
}
.

where spt u = {x ∈ Ω : u(x) 6= 0}. If φ ∈ C1(Ω), the set of admissible
functions is also extended to

A1 :=
{
u ∈ H1(Ω) : u − φ ∈ H1

0(Ω)
}
.



23. Coercivity Estimate.

Lemma (F is coercive)

For
F(u) =

∫
Ω

1
2 |Du|2 + ψu dx

there are constants c1, c2 > 0 depending on ψ and Ω so that for all
u ∈ A1,

F(u) ≥ c1‖u‖2
H1 − c2.

It follows that F is bounded below by −c2 and

I = inf
v∈A1

F(v)

exists and is finite.



24. Proof of the Coercivity Estimate.

Proof idea. The Lemma follows from the Poincaré Inequality: there is a
constant c3(Ω) > 0 such that∫

Ω
u2 ≤ c2

3

∫
Ω
|Du|2 for all u ∈ H1

0(Ω).

(Poincaré’s Inequality follows from the Fundamental Theorem of
Calculus.) Writing any u ∈ A1 as u = v + φ where v ∈ H1

0(Ω),

‖v + φ‖L2 ≤ ‖v‖L2 + ‖φ‖L2

≤ c3‖Dv‖L2 + ‖φ‖L2

≤ c3‖D(v + φ)‖L2 + c3‖Dφ‖L2 + ‖φ‖L2

so

‖v + φ‖H1 ≤ ‖v + φ‖L2 + ‖D(v + φ)‖L2

≤ (1 + c3)‖D(v + φ)‖L2 + c3‖Dφ‖L2 + ‖φ‖L2
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25. Proof of the Coercivity Estimate.-

It follows from this and the Schwartz Inequality

F(v + φ) = 1
2‖D(v + φ)‖L2 +

∫
Ω
ψ · (v + φ)

≥ ‖v + φ‖H1 − c3‖Dφ‖L2 − ‖φ‖L2

2(1 + c3)
−

√
‖ψ‖L2

√
‖φ+ v‖L2

≥ ‖v + φ‖H1 − c3‖Dφ‖L2 − ‖φ‖L2

2(1 + c3)
− 1

2ε‖ψ‖L2 − ε
2‖φ+ v‖L2

where we have used the Peter-Paul inequality (Cauchy’s Inequality):
for any ε > 0

2AB ≤ 1
ε A

2 + εB2.

Proof:
(

1√
ε
A−

√
εB

)2
≥ 0.



26. Proof of the Coercivity Estimate.-

Split the first term in the sum

F(v + φ) ≥ ‖v + φ‖H1

4(1 + c3)
− c3‖Dφ‖L2 + ‖φ‖L2

2(1 + c3)
− 1

2ε‖ψ‖L2

+

(
‖v + φ‖H1

4(1 + c3)
− ε

2‖φ+ v‖L2

)
Choosing ε = 1

2(1+c3)
the parenthesized term is nonnegative. Thus we get

the desired inequality with

c1 =
1

4(1 + c3)

and

c2 =
c3‖Dφ‖L2 + ‖φ‖L2

2(1 + c3)
+ 2(1 + c3)‖ψ‖L2 .



27. Minimization Problem. Existence of a minimizing sequence.

Let us proceed with the direct method. Choose a minimizing sequence
un ∈ A1 so that

lim
n→∞

F(un) = I.

Without loss of generality, F(un) < I + 1 for all n, therefore, by the
Lemma, for all n,

I + 1 ≥ F(un) ≥ c1‖un‖H1 − c2

which implies that the sequence is bounded in H1. For all n,

‖un‖H1 ≤
I + 1 + c2

c1
.



28. Minimization Problem. Compactness of the minimizing sequence.

FACT: In any Hilbert Space, e.g. in H1, any bounded sequence {un} is
weakly sequentially compact: there is a subsequence {un′} that weakly
converges in H1 to u0 ∈ H1. That is, for any v ∈ H1,

〈un′ , v〉H1 → 〈u0, v〉H1 as n′ →∞.

FACT: The embedding H1(Ω) ⊂ L2(Ω) is compact. i.e., by going to a
sub-subsequence if necessary, we may assume un′′ → u0 in L2(Ω).

FACT: A1 is a closed subspace of H1(Ω). If all un′ belong to a closed
subspace and {un′} converges weakly to u0 in H1, then u0 also belongs
to the closed subspace. i.e., u0 ∈ A1.

u0 is the candidate to be the minimizer of the variational problem.



29. Minimization Problem. Sequential Weak Lower Semi-continuity of F .

Lemma (SWLSC)

Let un be a minimizing sequence for

F(u) =
∫
Ω

1
2 |Du|2 + ψu dx

such that un → u0 strongly in L2(Ω) and weakly in H1(Ω). Then

F(u0) ≤ lim inf
n→∞

F(un).

Proof. Since un → u0 in L2(Ω),
∫
Ω ψun →

∫
Ω ψu0 and ‖un‖L2 → ‖u0‖L2 .

In any Hilbert Space the norm is SWLSC: ‖u0‖H1 ≤ lim infn→∞ ‖un‖H1 .

F(u0) = 1
2‖Du0‖2

L2 +

∫
ψu0 = 1

2‖u0‖2
H1 − 1

2‖u0‖2
L2 +

∫
ψu0

≤ lim inf
n→∞

{
1
2‖un‖2

H1 − 1
2‖un‖2

L2 +

∫
ψun

}
= lim inf

n→∞
F(un) = I.



30. Convexity Implies SWLSC.

More generally,
∫

f (x , u,Du) dx is SWLSC in H1 if

f ≥ 0,

f (x , u, p) is measurable in x for all (u, p),

f (x , u, p) is continuous in u for all p and almost every x .

f (x , u, p) is convex in p for all u and almost every x .



31. Differentiability.

The directional derivative of the continuous functional F : H1 → R at u
in the direction v is defined for u, v ∈ H1 to be

DF(u)[v ] = lim
ε→0

F(u + εv)−F(u)

ε
.

F is (Frechet) differentiable at u if

F(u + v)−F(u) = DF(u)[v ] + o(‖v‖H1) as ‖v‖H1 → 0.

If F is differentiable at u then DF(u)[v ] is linear in v .

F is continuously differentiable (C1) if the map DF : H1 → (H1)∗ is
continuous.

u0 ∈ H1 is a critical point of F if

DF(u0)[v ] = 0 for all v ∈ H1.

This is called the Euler Equation for F at u0.



32. Continuous Differentiability.

Lemma

F(u) =
∫
Ω

1
2 |Du|2 + ψu dx is continuously differentiable on H1(Ω).

Proof.

DF(u)[v ] = lim
ε→0

∫
Ω

1
2 |D(u + εv)|2 − 1

2 |Du|2 + ψ(u + εv)− ψu dx

ε

= lim
ε→0

∫
Ω

Du · Dv + ε
2 |Dv |2 + ψv dx =

∫
Ω

Du · Dv + ψv dx .

DF(u) is evidently linear. It is also a bounded linear functional:

|DF(u)[v ]| ≤ ‖Du‖L2‖Dv‖L2 +‖ψ‖L2‖v‖L2 ≤ (‖Du‖L2 + ‖ψ‖L2) ‖v‖H1 .

F is differentiable:

|F(u + v)−F(u)− DF(u)[v ]| = 1
2

∫
Ω |Dv |2 dx ≤ 1

2‖v‖
2
H1 = o (‖v‖H1)

as ‖v‖H1 → 0.



33. Proof of Continuous Differentiability.

DF is continuous: For u, v ,w ∈ H1,

|DF(u)[w ]− DF(v)[w ]| =
∣∣∣∣∫

Ω
(Du − Dv) · Dw dx

∣∣∣∣
≤ ‖D(u − v)‖L2‖Dw‖L2 ≤ ‖u − v‖H1‖w‖H1 .

Thus

‖DF(u)− DF(v)‖(H1)∗ = sup
w 6=0

|DF(u)[w ]− DF(v)[w ]|
‖w‖H1

→ 0

as ‖u − v‖H1 → 0.



34. Minimizer satisfies the Euler Lagrange Equation Weakly.

We have found u0 ∈ A1 such that u0 is the global minimizer. This means
that for all v ∈ H1

0(Ω), u0 + tv ∈ A1 and

f (t) = F(u0 + tv) ≥ F(u0).

f (t) achieves a minimum at t = 0, hence 0 = f ′(0) = DF(u0)[v ] or∫
Ω

Du0 · Dv + ψv dx = 0 for all v ∈ H1
0(Ω).

In other words, u0 is a weak solution of the Poisson Equation. u0 satisfies
the boundary condition in the sense that u0 − φ ∈ H1

0(Ω).



35. Convexity.

Definition

Suppose F : H1 → R ia a C1 functional. F is convex on A1 ⊂ H1 if

F(u + w)−F(u) ≥ DF(u)[w ] whenever u, u + w ∈ A1.

F is strictly convex if “=” holds iff w = 0.

Our Poisson functional is convex:

F(u + w)−F(u) =

∫
Ω

Du · Dw + 1
2 |D(w)|2 + ψw

≥
∫

Ω
Du · Dw + ψw = DF(u)[w ].

Lemma

Let u0 be a minimizer of F(u) =
∫
Ω

1
2 |Du|2 + ψu dx in A1.

Then u0 is unique.



36. Convexity Implies that the Minimizer is Unique.

Proof. Uniqueness follows from convexity. A special version for quadratic
forms is the Polarization Identity:

|p|2 + |q|2 = 2
∣∣p+q

2

∣∣2 + 2
∣∣p−q

2

∣∣2 .
Let u0, u1 both minimize F(u) =

∫
Ω |Du|2 + ψu on A1, namely

I = infu∈A1 F(u) = F(u1) = F(u2). Let w = 1
2(u1 + u2) ∈ A1. By the

Polarization Identity and the Poincaré Inequality

4I ≤ 4F(w) =

∫
Ω

2
∣∣∣Du1+Du2

2

∣∣∣2 + 4ψ(x)
(

u1+u2
2

)
=

∫
Ω

(
|Du1|2 + 2ψu1

)
+

∫
Ω

(
|Du2|2 + 2ψu2

)
−

∫
Ω

2
∣∣∣Du1−Du2

2

∣∣∣2
= 2I + 2I − 1

2

∫
Ω
|D(u1 − u2)|2 dx ≤ 4I − 1

2(1 + c3)
‖u1 − u2‖H1

since u1 − u2 ∈ H1
0(Ω). Hence u1 − u2 = 0: the minimizer is unique.



37. Regularity Theory.

Using the Direct Method, we showed the existence of a unique weak
solution u0 ∈ H1 of the Dirichlet problem for Poisson’s Equation. If the
coefficients are known to be smoother, then the solution has more
regularity. For example, this is a theorem proved in Math 6420.

Theorem

Suppose Ω ⊂ Rn is a bounded connected domain with C2,α boundary.
Suppose for some 0 < α < 1 that ψ ∈ Cα(Ω) and φ ∈ C2,α(Ω). If
u ∈ A1 is a weak solution to ∆u = ψ, namely∫

Ω
Du · Dv + ψv dx = 0 for all v ∈ H1

0(Ω),

then u ∈ C2,α(Ω). If ∂Ω, ψ and φ are in C∞(Ω) then so is u.

Cα(Ω) ⊂ C(Ω) is the subspace of α-Hölder continuous functions.
C2,α(Ω) ⊂ C2(Ω) are functions whose second derivatives are in Cα(Ω).



Thanks!




