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5. Deformation.

This is one of those topics that is usually discussed at the end of a text
on curves and surfaces, and not often reached in a modern abbreviated
treatment. Let me try to skip over many technicalities and state some
results.

We imagine a two dimensional surface in three space as the image of a
smooth vector function M2

0 = X0(W ) where

X0 : W → R3

is a smooth map on W ⊂ R2, an open subset. We imagine deforming the
surface M2

τ = X (W , τ) by a smooth one-parameter family of maps

X : W × (−ε, ε) → R3

such that X (u, v ; 0) = X0(u, v) for all points (u, v) ∈ W .



6. Deformation Vector Field of Surfaces.

Figure 1: Deformation of Surface

The deformation
vector field is the
velocity of the
deformation

Z (•) =
dX

dτ
(•; 0).



7. Preserving Lengths of Curves.

An infinitesimal isometric deformation is a deformation that preserves
lengths on the surface up to first order.

If γ(σ) = (u(σ), v(σ)) ∈ W is a curve for σ ∈ [a, b], then its length in
M2

τ of γ is

L(γ, τ) =

∫ b

a
dsτ =

∫ b

a

∣∣∣∣ d

dσ
X (γ(σ), τ)

∣∣∣∣ dσ

where dγ[1] = γ′ = (u′, v ′) ,an element of arclength, is by chain rule

dsτ = |dX ◦ dγ[1]| dσ =
∣∣dX (γ(σ); τ)[u′(σ), v ′(σ)]

∣∣ dσ

=

 Xu(γ(σ); τ) • Xu(γ(σ); τ) u′(σ)2

+2Xu(γ(σ); τ) • Xv (γ(σ); τ) u′(σ)v ′(σ)
+Xv (γ(σ); τ) • Xv (γ(σ); τ) v ′(σ)2


1
2

dσ

=
(
(dX • dX )[γ′(σ), γ′(σ)]

) 1
2
dσ

which, for short is written ds2
τ = dX • dX .



8. Equation for Infintesimal Deformation.

Note that for a regular surface, dX is full rank so that dX • dX is a
symmetric, positive definite quadratic form called the metric form.

To preserve the length of curves up to first order we must have for every
curve γ : [a, b] → W ,

0 =
d

dτ

∣∣∣∣
τ=0

L(γ) =

∫ b

a

(dX • dZ )[γ′(σ), γ′(σ)](
(dX • dX )[γ′(σ), γ′(σ)]

) 1
2

dσ

which implies that the quadratic form

dX • dZ = 0. (1)

This is the equation for infinitesimal isometric deformation for unknown
vector field Z .



9. Equation in Local Coordinates.

The infinitesimal deformation equation (1) is shorthand for the more
cumbersome, but perhaps more familiar form

0 = Xu • Zu

0 = Xu • Zv + Xv • Zu

0 = Xv • Zv

where the vector functions

X ,Z : W → R3

give the position and deformation field in a local coordinates.

This is a system of three linear first order partial differential equations for
the three unknown components of the vector function Z .



10. Rigid Motions.

If a surface moves as a rigid body, then the lengths of all curves on M2
τ

are preserved. Rigid motions are the composition of of rotations and
translations. The deformation due to a rigid motion may be written in
terms of smooth rotation matrix R(τ) and translation vector T (τ):

X (•; τ) = R(τ)X0(•) + T (τ)

such that R(0) = I and T (0) = 0. The deformation vector becomes

Z (•) =
d

dτ

∣∣∣∣
τ=0

X (•, τ) = R ′(0)X0(•) + T ′(0) = A× X0(•) + B.

Multiplying by the skew symmetric matrix R ′(0) (why?) is the same as
taking a cross product with the rotation vector
A = (R ′32(0),R ′13(0),R ′21(0)).
The translation vector B = T ′(0). Such a deformation is called an
infinitesimal congruence. Observe that an infinitesimal congruence is an
infinitesimal isometric deformation:

dX • dZ = dX • [A× dX ] = 0.



11. Why Derivative of Rotation R ′(0) is Skew.

R(t) is a smooth family of rotations matrices with R(0) = I . Since R
preserves Euclidean inner product,

RV • RW = V •W

for all vectors V ,W . Hence

RTRV •W = V •W

which implies
RTR = I .

Differentiating with respect to t,

(R ′)TR + RTR ′ = 0

Since R(0) = I , at t = 0,
R ′ + R = 0

so R ′(0) is skew.



12. Why Multiplication by Derivative of Rotation R ′(0) is Cross Product.

Thus there are numbers a, b, c so that

R ′(0)V =

 0 a b
−a 0 c
−b −c 0

 v1

v2

v3

 =

 av2 + bv3

−av1 + cv3

−bv1 − cv3


=

∣∣∣∣∣∣
i j k
−c b −a
v1 v2 v3

∣∣∣∣∣∣ =

−c
b
−a

×

v1

v2

v3

 = A× V

The vector V is the rotation vector. It is parallel to the axis of the
rotation. Its magnitude gives the angular velocity.



13. Definition of and Infinitesimally Rigid Surface.

A surface M2 is infinitesimally rigid is every vector field Z on M2

satisfying the infinitesimal rigidity equation (1)

dX • dZ = 0

is an infinitesimal congruence. If there is a solution Z which is not an
infinitesimal congruence, then we call it an infinitesimal flex. An
infinitesimal deformation gives a corresponding deformation, the simple
flex,

Y = X0 + τZ

which preserves the metric to first order at τ = 0 because dY • dY =

dX • dX + 2τdX • dY + τ2dY • dY = dX • dX + τ2dY • dY .

Note that both Y = X ± τZ have the same metric forms, i.e., are
isometric.



14. Example of Infinitesimal Deformation.

Figure 2: Barrel Example: Surface has isometric
Deformation Supported in Flat Region

Suppose that the surface X0

has a flat planar region F ,
whose normal vector is
(0, 0, 1). Let ψ : F → R be a
smooth a “bump function”
such that ψ ≥ 0 and ψ = 0
near ∂F and off F . Then

Z = (0, 0, ψ)

which is zero off F is an
infinitesimal deformation.
(dX and dZ are
perpendicular.)



15. Geometric Aside: Moving Frame.

Figure 3: Moving Frame

Locally, a surface is X : W → R3.
Tangent plane is spanned by basis {Xu,Xv}.

At each point replace
by smoothly varying
orthonormal tangent
vectors {e1, e2}.
Unit normal is

e3 = e1 × e2.

Define dual basis of
one-forms {ωA} by
ωA(eB) = δAB . So

dX =
3∑

i=1

ωiei

and metric is

ds2 = (ω1)2 + (ω2)2.



16. Geometric Aside: Extrinsic Geometry.

Extrinsic Geometry deals with how M sits in its ambient space.

Near P ∈ M, the surface may be parameterized as the graph over its
tangent plane, where f (u1, u2) is the “height” above the tangent plane

X (u1, u2) = P + u1e1(P) + u2e2(P) + f (u1, u2)e3(P). (2)

So f (0) = 0 and Df (0) = 0. The Hessian of f at 0 gives the shape
operator at P. It is also called the Second Fundamental Form.

hij(P) =
∂2 f

∂ui ∂uj
(0)

The Mean Curvature and Gaussian Curvature at P are

H(P) =
1

2
tr(hij(P)), K (P) = det(hij(P)).



17. Geometric Aside: One-Forms.

A one-form on R3 is an expression of the form

α = f dx + g dy + h dz

where f , g , h are smooth functions on R3. One-forms may be integrated
along a curve Γ given by

γ : [a, b] → R3 where γ(t) =

u(t)
v(t)
w(t)


by the formula∫

Γ
α =

∫ b

a

(
f (γ(t))u′(t) + g(γ(t))v ′(t) + h(γ(t))w ′(t)

)
dt.

The differential d (or gradient) of a function φ on R3 is a one form

dφ =
∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dx .



18. Geometric Aside: Two-Forms.

A two-form on R3 is an expression of the form

β = f dx ∧ dy + g dx ∧ dz + h dy ∧ dz

where f , g , h are smooth functions on R3. Two-forms may be integrated
along a surface M = X (U) given by

X : U → R3 where X (s, t) =

u(s, t)
v(s, t)
w(s, t)


and U ⊂ R2 is smooth bounded domain by

∫
M
β =∫∫

U

(
f (X (s, t))

∂(u, v)

∂(s, t)
+ g(X (s, t))

∂(u,w)

∂(s, t)
+ h(X (s, t))

∂(v ,w)

∂(s, t)

)
ds dt

where the Jacobean is

∂(u, v)

∂(s, t)
=
∂u

∂s
(s, t)

∂v

∂t
(s, t)− ∂u

∂t
(s, t)

∂v

∂s
(s, t)



19. Geometric Aside: Area Two-Forms.

An example of a two-form is the area form for the surface M. In terms of
the orthonormal coframe it is given by

β = dA = ω1 ∧ ω2

which is everywhere positive on positively oriented surfaces M. Its
integral over any subset N ⊂ M gives the area of the subset

A(N) =

∫
N
ω1 ∧ ω2.



20. Geometric Aside: Exterior Derivative of One-Forms. Stokes Theorem.

The exterior derivative d (or curl) of a one-form

α = f dx + g dy + h dz

on R3 is a two-form

dα =

(
∂g

∂x
− ∂f

∂y

)
dx∧dy +

(
∂h

∂x
− ∂f

∂z

)
dx∧dz +

(
∂h

∂y
− ∂g

∂z

)
dy ∧dz .

Stokes Theorem in this notation is∫
Σ

d α =

∫
∂Σ
α

where ∂Σ is the collection of oriented boundary curves of the surface Σ.
The right side is zero if the surface is closed (has no boundary such as a
sphere or torus.)



21. Geom. Aside: 2nd Fundamental Form in Terms of Moving Frame.

Upper case Roman indices run over A,B,C , . . . = 1, 2, 3 and lower case
run over i , j , k, . . . = 1, 2. Einstein Convention: repeated lower and upper
indices are assumed to be summed.

Because eA · eA = 1, taking the directional derivative deA · eA = 0, so
that deA ⊥ eA and we may express the rate of rotation of the frame

deA = ωA
BeB .

ωA
B are called connection forms. Differentiation of eA · eB = δAB implies

ωA
B is skew and satisfies

dωA = ωB ∧ ωB
A. (3)

Also, differentiating the normal defines de3 = ω3
iei . Moreover

ω3
i = −hijω

j

recovers the second fundamental form.



22. Infinitesimal Rigidity of Ovaloids.

An ovaloid is a C3 closed surface M2 which is the boundary of a bounded
convex domain of three space. It is strictly convex if the second
fundamental form hij with respect to the inner normal is positive definite.

Theorem (Liebmann, 1899)

Strictly convex ovaloids are infinitesimally rigid.

This question was asked by Jellet in 1854, who was unable to prove it.

In 1835 Minding posed a related problem: if two ovaloids are isometric,
must they be congruent? For round spheres, this was proved by
Liebmann and Hilbert in 1903. The first proof for ovaloids was given by
Weyl in 1915.

See my 2012 USAC Colloquium Slides “Geometry of Bending Surfaces”,
http://www.math.utah.edu/ treiberg/BendingSlides.pdf



23. Bending Vector.

Let X be local coordinates in the neighborhood of a point of a surface
M2 ⊂ R3. Let Z be an infinitesimal deformation. Then

dX • dZ = 0.

This implies that there is a globally defined vector field Y , the bending
vector, such that

dZ = Y × dX .

Intuitively, this is because dZ is perpendicular to dX .

Thus, the differential of an infinitesimal deformation dZ gives a local
rotation whose axis Y varies from point to point.



24. Proof.

Because if we choose a right-handed orthonormal frame on M such that
e1 and e2 are tangent so e3 is normal to M. Let {ωA} be the dual
coframe so dX = ωi ei and Z = ζAeA (Einstein convention!) Then the
covariant derivative is in coordinates dZ = ζB

j ω
j eB . Substituting,

0 =
(
ωi ei

)
•

(
ζB
j ω

j eB

)
=

(
δiBζ

B
j

)
ωi ⊗ ωj

= (ζ1
1)ω

1 ⊗ ω1 + (ζ1
2 + ζ2

1)ω
1 ⊗ ω2 + (ζ2

2)ω
2 ⊗ ω2

so ζ1
1 = ζ2

2 = ζ2
1 + ζ1

2 = 0. Hence e1 × e2 = e3 and so on implies

dZ = ζ1
2 ω

2 e1 + ζ2
1 ω

1 e2 +
(
ζ3

1 ω
1 + ζ3

2 ω
2
)

e3

=
(
ζ3

2 e1 − ζ3
1 e2 + ζ2

1 e3

)
×

(
ωj ej

)
= Y × dX .

The desired Y = yA eA = ζ3
2 e1 − ζ3

1 e2 + ζ2
1 e3.



25. Infinitesimal Rigidity of Ovaloids.

Theorem (Liebmann, 1899)

Strictly convex ovaloids are infinitesimally rigid.

Figure 4: Wilhelm Blaschke 1885–1962

Proof (Blaschke, 1921).

Here is the basic idea of Blaschke’s amazing proof using an integral
formula.



26. Sketch of Blaschke’s Proof.

The idea is to show that the local bending vector is a constant. In other
words, its derivative dY should vanish.

Blaschke finds a one-form θ such that

dθ = Φ(X , dX , dY )ω1 ∧ ω2

where Φ ≤ 0 is a nonpositive function if the surface is convex and Φ = 0
implies dY = 0. Then by Stokes Theorem on the ovaloid M,

0 =

∫
M

dθ =

∫
M

Φ(X , dX , dY )ω1 ∧ ω2

whch implies Φ = 0 at all points so dY = 0.



27. Prepare the Proof: Differentiate dZ .

Differentiating dZ = Y × dX we find

0 = dY × dX

which means tangent planes are parallel to each other. Hence the
covariant derivative may be written

dY = y i
j ω

jei

such that y1
1 + y2

2 = 0.



28. Prepare the Proof: Proof of dY Properties.

Because, if we write the covariant derivative dY = yA
iω

ieA we get

0 = (yA
i ω

ieA)× (ωjej)

=
(
yA

i ω
i ∧ ωj

)
eA × ej

= ω1 ∧ ω2
{
(y1

1 + y2
2) e1 × e2 − y3

2 e3 × e1 + y3
1 e3 × e2

}
so that y1

1 + y2
2 = y3

1 = y3
2 = 0.



29. Prepare the Proof: Differentiate the Bending Vector.

Differentiating dY = y i
j ω

jei ,

0 = dy i
j ∧ ωjei + y i

j ω
k ∧ ωk

jei − y i
j ω

j ∧ ωB
i eB

=
(
dy i

j − y i
k ωj

k + yk
j ωk

i
)
ωjei − y i

jhik ω
j ∧ ωke3

This gives a first order system of PDE’s for y i
j . The e3 coefficient

0 =
(
y i

1hi2 − y i
2hi1

)
ω1 ∧ ω2

0r using y1
1 + y2

2 = 0.

0 = −y1
2h11 + 2y1

1h12 + y2
1h22 (4)



30. Prepare the Proof: Blaschke’s Formula.

Using the determinant of a matrix whose three column vectors are given,
we consider the one-form defined globally on M2,

θ = det (X ,Y , dY )

Differentiating using y3
j = y1

1 + y2
2 = 0 and ξA = X • eA,

dθ = det (dX ,Y , dY ) + det (X , dY , dY )

= det
(
ωiei , yBeB , yk

jω
jek

)
+ det

(
ξAeA, y i

jω
jei , yk

`ω
`ek

)
= −y3

(
y2

2 + y1
1

)
ω1 ∧ ω2 + ξ3

(
y1

jy
2
` − y2

jy
1
`

)
ωj ∧ ω`

= 2ξ3
(
y1

1y
2
2 − y2

1y
1
2

)
ω1 ∧ ω2



31. Prepare the Proof: Algebraic lemma.

Lemma

Assume hij is symmetric and positive definite and y i
j satisfies

0 = −y1
2h11 + 2y1

1h12 + y2
1h22; y1

1 + y2
2 = 0. (5)

Then
det(y i

j) = y1
1y

2
2 − y2

1y
1
2 ≤ 0

and is equal to zero only if all y i
j = 0.



32. Prepare the Proof: Proof of Algebraic Lemma.

Positive definite means h11 > 0, h22 > 0 and det(hij) > 0.

There are many proofs. We give an elementary argument.

Proof.

In case h12 = 0 we have

0 = −y1
2h11 + y2

1h22 (6)

so y1
2 and y2

1 have the same sign so

det(y i
j) = −(y1

1)
2 − y2

1y
1
2 ≤ 0.

If equal to zero then y1
1 = −y2

2 = 0 and, say, y1
2 = 0 which imples

y2
1 = 0 by (6). The case y2

1 = 0 is similar.



33. Prepare the Proof: Proof Continued.

In case h12 6= 0 we have by (5), y1
1 = y1

2h11−y2
1h22

2h12
. Hence

det(y i
j) = −

(
y1

2h11−y2
1h22

2h12

)2
− y1

2y
2
1

= − [y1
2h11−y2

1h22]
2
+4h2

12y
2
1y1

2

4h2
12

= − [y1
2h11+y2

1h22]
2−4(h11h22−h2

12)y
2
1y1

2

4h2
12

If y2
1y

1
2 ≤ 0 then det(y i

j) ≤ 0 and equal to zero if y1
2 = y2

1 = 0 so
y1

1 = y2
2 = 0 by (5). If y2

1y
1
2 ≥ 0 then

det(y i
j) = −(y1

1)
2 − y2

1y
1
2 ≤ 0

also and equal to zero implies y1
1 = y2

2 = 0 and, say, y1
2 = 0. Then

y2
1 = 0 by (5). The case y2

1 = 0 is similar.



34. Infinitesimal Rigidity of Ovaloids.

Theorem (Liebmann, 1899)

Strictly convex ovaloids are infinitesimally rigid.

Proof (Blaschke, 1921).

Assume the origin is in the interior of M and e3 is the inner normal. It
follows that

ξ3 = X • e3 < 0.

M is closed and oriented so by Stokes Theorem and Blaschke’s Formula

0 =
∫
M dθ =

∫
M 2ξ3 det(y i

j) dA

Since M2 is strictly convex, hij is positive definite so by the Algebraic
Lemma, det(y i

j) ≤ 0 and the integrand in nonnegative. Since the
integral equals zero, the determinant must vanish, hence all y i

j = 0
everywhere on M2 by the Lemma. Hence Y is constant.



35. Infinitesimal Rigidity of Ovaloids Proof.

Consider the translation field

T = Z − Y × X .

Differentiating, since Y satisfies dZ = Y × dX so

dT = dZ − dY × X − Y × dX = −dY × X

which vanishes because Y is constant. Thus Z = T + Y × X is an
infinitesimal congruence and M is infinitesimally rigid.



36. Cohn-Vossen’s Flexible Flying Saucer.

Figure 5: Section of Cohn-Vossen’s Infinitesimally Flexible Surface of Rotation

In 1930, Stefan Cohn-Vossen found that by cutting an arbitrarily small
nonconvex groove into a surface of revolution, one could create an
ifinitesimally flexible surface. He also found that by gluing together four
cones, one could get an infinitesimally flexible flying saucer surface. The
radial distance as a function of x is given by the even piecewise linear
function, depicted here.



37. Cohn-Vossen’s Flexible Flying Saucer.
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37. Cohn-Vossen’s Flexible Flying Saucer.



38. Cohn-Vossen’s Flexible Flying Saucer. Stop!



39. Example of Closed Surface that is Not Infinitesimally Rigid.

In 1952, E. Rembs
found that for
countably many
values in 1

3 < c2 < 1
2 ,

the nonconvex
surfaces of revolution
(7) admit nontrivial
infinitesimal
deformations.

He used separation of
variables and Fourier
series.

Figure 6: Sections of Rembs Surfaces

Equation of section as c varies

(x2 + r2)2 + 2c2(x2 − r2) = 1− 2c2 (7)

c = 0 is sphere. c2 = 1
2 is revolution of lemniscate.



40. Application: Isometric Non-Congruent Analytic Surfaces.

The deformations Z of Rembs were given by (finite) Fourier Series.
Hence both the surface and the deformation are analytic functions (those
given by convergent power series.) Thus the existence of non-trivial
isometric deformations is not an artifact of lack of smoothness as in the
Barrel Example, Fig. 2

In the barrel surface, the derivatives of z-component of X would be dead
zero when computed in the flat part so the power series would consist of
the constant term only. Thus barrel surface cannot be analytic because
its continuation to M would remain constant.

For small τ > 0 the two surfaces

X ± τZ

are analytic and isometric (have the same metric)

ds2
+τ = ds2

−τ = dX • dX + τ2 dZ • DZ

but, as observer by Rembs, not congruent.



41. Collander Surfaces

Figure 7: Collander Surface: Convex Surface with Planar Boundary Components

A Collander Surface is a smooth convex surface M with m smooth
boundary curves, “holes,” C1, . . . ,Cm such that K > 0 away from the
boundary curves and for each k = 1 . . . ,m there is a plane πk such that
Ck is a strictly convex curve in πk and M makes a first order tangency to
πk along Ck .



42. Rigidity of Collander Surfaces.

Theorem (Rembs 1919)

Collander surfaces are infinitesimally rigid.

Proof.

The proof is as in the Ovaloid Theorem. For a deformation field and its
corresponding bending field Y , it suffices to show that the Blaschke’s
integrand vanishes. This time, Stokes’ Theorem has boundary terms∑m

i=1

∫
Ci
θ =

∫
M dθ =

∫
M 2ξ3 det(y i

j) dA

As ξ3 det(y i
j) ≥ 0 by Lemma 3., it suffices to show that each∫

Ci
θ ≤ 0 (8)

Fix i and take the orientation of Ci as part of ∂M. Thus if we take a
local frame for M such that M is convex toward e3 and e1 is tangent to
Ci , then e2 must point into M.



43. Proof of the Rigidity of Collander Surfaces.

Since e3 is the normal to π3 along Ci it is constant, so along Ci ,

0 = ∇e1e3 = ω3
j(e1)ej = −hjkω

k(e1)ej = −hj1ej

It follows that h11 = h12 = h21 = 0 along Ci . Equation (4) tells us

0 = −y1
2h11 + 2y1

1h12 + y2
1h22 = y2

1h22

along Ci . Now we also assumed that M makes first order contact, so
that h22 > 0 on Ci . Hence on Ci ,

y2
1 = 0.

The covariant derivative of a vector field, dY = yA
jω

j = dyA + yBωA
B .

Since y3
1 = 0 everywhere, then along Ci ,

0 = y3
1 = dy3(e1) + y jωj

3(e1) = e1y
3 + y jhj1 = dy3

ds .

Thus y3 = const. along Ci .



44. Proof of the Rigidity of Collander Surfaces. -

θ = (X ,Y , dY ) = ξAyBy i
jω

j(eA, eB , ej)

= ξ3yky i
jω

j(e3, ek , ej) + y3ξky i
jω

j(ek , e3, ej)

= ξ3
(
y1y2

j − y2y1
j

)
ωj + y3

(
ξ2y1

j − y1y2
j

)
ωj

On Ci where y2
1 = 0 and y3 = const. we have

θ = −ξ3y2y1
1ω

1 + y3ξ2y1
1ω

1 +
(
· · ·

)
ω2.

The second term is an exact differential so integrates to zero on Ci .
Indeed, since Ci is planar, there is a constant vector field Vi on three
space such that e3 = Vi on Ci . Since dT = X × dY we have on Ci ,

d(Vi • T ) = Vi • dT = (V ,X , dY ) = ξAy i
j(e3, eA, ei )ω

j

=
(
ξ1y2

j − ξ2y1
j

)
ωj = −ξ2y1

1ω
1 +

(
· · ·

)
ω2. (9)



45. Proof of the Rigidity of Collander Surfaces. - -

As ξ3 < 0 is constant, the proof reduces to show each∫
Ci

y2y1
1 ω

1 ≤ 0.

The area enclosed by Ci may be computed as follows. Let V be the
constant vector field such that ei = V along Ci . Observe that

d(V ,X , dX ) = (V , dX , dX ) = (e3, ei , ej)ω
i ∧ ωj = 2ω1 ∧ ω2

so that since Ci is oriented to the outside surface,

A(Ci ) = −1
2

∫
Ci

(V ,X , dX ) > 0.

The integrand can be written

(V ,X , dX ) = ξAξBiω
i (e3, eA, eB)

= (ξ1ξ2i − ξ2ξ1i )ω
i = −ξ2ξ11 ω

1 + (· · · )ω2
(10)

This simplifies because dX = ξAiω
ieA = ωjej implies ξi j = δi j .



46. Proof of the Rigidity of Collander Surfaces. - - -

Now, Ci is convex away from e2 so

∇e1e1 = ω1
A(e1)eA = ω1

2(e1)e2+ω1
3(e1)e3 = ω1

2(e1)e2+h11e3 = −κe2

where the curvature of the plane curve Ci is κ = ω2
1(e1) > 0. But

1 = ξ11 = dξ1(e1) + ξiωi
1(e1) = e1ξ

1 + ξ2ω2
1 = d

ds ξ
1 + κξ2

0 = ξ21 = dξ2(e1) + ξiωi
2(e1) = e1ξ

2 + ξ1ω1
2 = d

ds ξ
2 − κξ1

(11)

Similarly, using y2
1 = h11 = h12 = 0 along Ci

y1
1 = dy1(e1) + yAωA

1(e1) = e1y
1 + y2ω2

1(e1) + y3h11

= d
ds y

1 + κy2

0 = y2
1 = dy2(e1) + yAωA

2(e1) = e1y
2 + y1ω1

2(e1) + y3h12

= d
ds y

2 − κy1

(12)



47. Proof of the Rigidity of Collander Surfaces. - - - -

The preceding formulas simplify if we parameterize Ci using the angle of
the e1 relative to some fixed vector in πi . Taking

t = e1 = (cosϑ,− sinϑ) n = e2 = (sinϑ, cosϑ)

then ξ2 = X • n. ξ2 < 0 everywhere if the origin is inside Ci . Denote
derivatives with respect to ϑ by dot. Thus ṫ = −n and ṅ = t. Since Ẋ is
parallel to t, differentiating ξ2 = X • n,

ξ̇2 = Ẋ • n + X • t = X • t

hence the position vector is X = ξ̇2 t + ξ2 n. Differentiating

Ẋ = ξ̈2 t − ξ̇2 n + ξ̇2 n + ξ2 t = (ξ̈2 + ξ2)t

It follows that

1

κ
=

ds

dϑ
= ξ̈2 + ξ2,

d

ds
=

1

κ

d

dϑ
, ω1 =

1

κ
dϑ.



48. Proof of the Rigidity of Collander Surfaces. - - - - -

From (11) and (12) we see that

ξ̇2 = 1
κ

d
ds ξ

2 = ξ1; ξ̈2 = 1
κ

d
ds ξ

1 = −ξ2 + ξ1
1

κ

ẏ2 = 1
κ

d
ds y

2 = y1; ÿ2 = 1
κ

d
ds y

1 = −y2 + y1
1

κ

Finally, the integrands have the simplified form

J1 =
∫
Ci

(V ,X , dX ) = −
∫
Ci
ξ2ξ11ω

1 = −
∫ 2π
0 ξ2(ξ2 + ξ̈2) dϑ < 0;

J2 =
∫
Ci

(V ,X , dY ) = −
∫
Ci
ξ2y1

1ω
1 = −

∫ 2π
0 ξ2(y2 + ÿ2) dϑ = 0;

J3 =
∫
Ci

(V ,Y , dx) = −
∫
Ci

y2ξ11ω
1 = −

∫ 2π
0 y2(ξ2 + ξ̈2) dϑ;

J4 =
∫
Ci

(V ,Y , dY ) = −
∫
Ci

y2y1
1ω

1 = −
∫ 2π
0 y2(y2 + ÿ2) dϑ.

Integration by parts shows J3 = J2 = 0. It remains to show that J4 ≥ 0.



49. Proof of the Rigidity of Collander Surfaces. - - - - - -

We conclude the proof using a basic inequality we assume for now.

Lemma (Wirtinger’s Inequality)

Let f (θ) be a smooth function with period 2π i.e., f (θ + 2π) = f (θ) for
all θ. Suppose f has mean value zero

0 = 1
2π

∫ 2π
0 f (θ) dθ.

Then ∫ 2π
0 f (θ)2 dθ ≤

∫ 2π
0 ḟ (θ)2 dθ.

Proof of the Collander Theorem, Confinued.

Since ξ11 = 1, it follows from (10),

2A(C1) = −
∫ 2π
0 ξ2 dϑ > 0.



50. Proof of the Rigidity of Collander Surfaces. - - - - - - -

Thus there is a constant c so that f = cξ2 + y2 satisfies∫ 2π
0 f dϑ = 0.

From Wirtinger’s Inequality, we have

0 ≤
∫ 2π
0 ḟ 2 − f 2 dϑ

= −
∫ 2π
0 f (f + f̈ ) dϑ

= c2J1 + cJ2 + cJ3 + J4

Now J1 < 0 and J2 = J3 = 0 implies J4 ≥ 0. The same argument holds
for each Ci completing the proof of the Collander Theorem.



51. Wirtinger’s Inequality.

Wirtinger’s Inequality bounds the L2 norm of a function by the L2 norm
of its derivative. It is also known as the Poincaré Inequality in higher
dimensions. We state stronger hypotheses than necessary.

Theorem (Wirtinger’s inequality)

Let f (θ) be a piecewise C 1(R) function with period 2π (for all θ,
f (θ + 2π) = f (θ)). Let f̄ denote the mean value of f

f̄ = 1
2π

∫ 2π
0 f (θ) dθ.

Then ∫ 2π
0

(
f (θ)− f̄

)2
dθ ≤

∫ 2π
0 (f ′(θ))2 dθ.

Equality holds iff for some constants a, b,

f (θ) = f̄ + a cos θ + b sin θ.



52. Proof of Wirtinger’s Inequality.

Proof.

Idea: express f and f ′ in Fourier series. Since f ′ is bounded and f is
continuous, the Fourier series converges at all θ

f (θ) = a0
2 +

∑∞
k=1 {ak cos kθ + bk sin kθ}

where the Fourier coefficients are determined by formally multiplying by
sin mθ or cos mθ and integrating to get

am = 1
π

∫ 2π
0 f (θ) cos mθ dθ, bm = 1

π

∫ 2π
0 f (θ) sinmθ dθ,

hence 2f̄ = a0. Sines and cosines are complete so Parseval’s equation
holds ∫ 2π

0

(
f − f̄

)2
= π

∑∞
k=1

(
a2
k + b2

k

)
. (13)

Formally, this is the integral of the square of the series, where after
multiplying out and integrating, terms like

∫
cos mθ sin kθ = 0 or∫

cos mθ cos kθ = 0 if m 6= k drop out and terms like
∫

sin2 kθ = π
contribute π to the sum.



53. Proof of Wirtinger’s Inequality. -

The Fourier Series for the derivative is given by

f ′(θ) ∼
∑∞

k=1 {−kak sin kθ + kbk cos kθ}

Since f ′ is square integrable, Bessel’s inequality gives

π
∑∞

k=1 k2
(
a2
k + b2

k

)
≤

∫ 2π
0 (f ′)2. (14)

Wirtinger’s inequality is deduced form (13) and (14) since∫ 2π

0
(f ′)2 −

∫ 2π

0

(
f − f̄

)2 ≥ π

∞∑
k=2

(k2 − 1)
(
a2
k + b2

k

)
≥ 0.

Equality implies that for k ≥ 2, (k2 − 1)
(
a2
k + b2

k

)
= 0 so ak = bk = 0,

thus f takes the form f (θ) = f̄ + a cos θ + b sin θ.



Thanks!


