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2. Outline.

Fault Tolerance

Four models

(NC) Prescribed Nonlinear Strain
(ND) Prescribed Length
(LC) Prescribed Linearized Strain
(LD) Prescribed Elongations

Counting Formula
Wagon-Wheel Condition
Wagon-Wheel Implies Compatibility of (LC)
Hexagonal Trusses are Generic
Numerical Experiments
(LD) in Three Dimensions



3. Compatibility in Linearized Elasticity

This is a preliminary study of compatibility conditions on discrete
structures. A structure or truss in Rd with d = 2 or d = 3 consists of a
finite number of vertices (nodes) connected by straight edges (“bars,” or
“links”) which form a connected graph. We often consider rigid
substructures of the hexagonal grid in R2, e.g.,

Figure: Truss.

If there is a surplus of edges in the truss, then it has fault tolerance or
resilience to damage. Edges may be removed (damaged) without the
truss losing rigidity.



4. Compatibility Means Fault Tolerance.

Figure: Over-rigid truss. Removing any edge leaves a rigid truss.

Suppose we specify lengths of edges and try to solve for positions of the
vertices. If the truss has more edges than necessary to determine these
positions, this over-specification results in fault tolerance, a resilience to
damage. But it also requires compatibility conditions in length data. We
explore how compatibility conditions as a measure of excess rigidity.



5. Four Models of Material.

We consider four problems.
(NC) The Prescribed Nonlinear Strain,
(ND) its discrete approximation the Prescribed Length,
(LC) the linearization of (NC), the Prescribed Linearized Strain and
(LD) the linearization of (ND) Prescribed Elongations.

The continuum problems are overdetermined PDE’s. The discretized
problems are overdetermined equations. Each problem requires
Compatibility Conditions on their data to be solvable. The compatibility
conditions for (NC), (ND) and (LC) are fairly well understood. The
compatibility conditions for (LD) are less well understood and are
investigated in this work.



(NC) Prescribed Nonlinear Strain



7. (NC) Prescribed Green Deformation (Nonlinear Strain).

Let B ⊂ E2 be a Euclidean material disk domain with with piecewise
smooth boundary and coordinates (X 1,X 2), and S ⊂ E2 the target
domain with coordinates (x1, x2). A configuration is an in-plane
displacement

φ : B → S.

Its material (Lagrangian) strain tensor is

E [φ] = 1
2 (FA • FB − δij) = 1

2 (ζ − I ) , where F a
A =

∂φa

∂XA

where ζ is the Green Deformation tensor (Right Cauchy-Green
Deformation Tensor).
The equation for configurations φ with prescribed Green tensor

(NC) ζ = FA • FB

is just the equation for a mapping to Euclidean space with prescribed
pull-back metric. The compatibility condition for (NC) to be soluble is
that the prescribed metric ζ have vanishing Riemannian curvature.



8. Variational Problem of Nonlinear Elasticity

Associated to a configuration is the energy of deformation, whose
positive definite energy density depends on the nonlinear strain

Energy =

∫
B

W (E [φ](x)) dx .

The study of variational problems for energy minimizing configurations is
a major theme of nonlinear elasticity.

Minimizing energy over all configurations φ with appropriate
boundary conditions results in elliptic systems.

Equivalently, we may minimize the energy over all elasticities E
satisfying the compatibility conditions.

But our focus in this study are the prescribed strain equations and their
discretizations.



9. Compatibility Condition for Prescribed Green Deformation (NC)

For surfaces, the compatibility condition is the vanishing of Riemannian
Curvature or R1

2
12 = K , the Gauss Curvature. Putting

D2 = ζ11ζ22 − ζ212,

K =
1

2D2
(−ζ22,11 + 2ζ12,12 − ζ11,22)

+
ζ22
4D4

(
ζ11,1ζ22,1 − 2ζ11,1ζ12,2 + ζ211,2

)
+

ζ12
4D4

(−2ζ12,1ζ22,1 − 2ζ11,2ζ12,2 + 4ζ12,1ζ12,2 − ζ11,2ζ22,1 + ζ11,1ζ22,2)

+
ζ11
4D4

(
ζ11,2ζ22,2 − 2ζ12,1ζ22,2 + ζ222,1

)
K = 0 is the integrability condition for solvability of the differential
system

(NC) ζ = FA • FB .



(ND) Prescribed Lengths



11. (ND) Discrete Equation for Prescribed Length.

For a PL triangulation of B, let Vi be its vertices, Eij its edges and Tijk

its triangular faces. Its 1-skeleton is a truss approximating the material
B. Let the positive numbers Lij be given for each edge such that Lij

satisfy the triangle inequalities.

Figure: Polyhedral Embedding.

We seek an embedding of B with vertices Xi = φ(Vi ) such that realizes
the prescribed lengths of edges

(ND) |Xi − Xj | = Lij for all edges ij

It is not clear how this discretization is an approximation of (NC). It is
not the result of a finite difference scheme nor discrete differential forms.



12. Alexandrov’s Notion of Discrete Approximation

In what sense does the discretization (ND) approximate (NC)?

The approximation may be understood in A. D. Alexandrov’s theory of
surfaces with bounded curvature. These are metric spaces (B, ρ(x , y))
where notions of length of curves, geodesics, angle, area and integral
curvature make sense, and where the curvature measure is assumed to be
bounded above by area.

Examples of Alexandrov spaces include smooth Riemannian surfaces with
distance ρ(x , y) induced from the metric and polyhedral surfaces which
are piecewise Euclidean surfaces with polygon faces. Alexandrov spaces
are in a sense completions of Riemannian surfaces or polyhedral surfaces.



13. Alexandrov’s Approximation Theorem

Let ρ(x , y) be the distance between x , y ∈ B induced from the metric ζ.
For a triangulation T of B, let Lij = ρ(Vi ,Vj) be the induced distance
between vertices. Since the distance satisfies the triangle inequality on
triangles, the triangles may be realized as Euclidean triangles, and a
metric may be defined on each T ∈ T by pulling back the Euclidean
metric using the affine parameterization. The resulting metric ζT and
induced distance ρT makes (B, ρT ) a polyhedral surface.

Theorem (A. D. Alexandrov 1962)

Let (B, ρ) be an Alexandrov Space with bounded curvature. Let Ti be a
sequence of PL triangulations such that the ρ-diameter of triangles tend
uniformly to zero as i →∞. Let ρTi be the corresponding polyhedral
distance. Then ρTi → ρ uniformly on B × B. Moreover, the integral
curvature measures ωTi



14. Compatibility Condition for the Prescribed Lengths Problem (ND)

The realization problem may be expressed geometrically as follows: find
an isometric immersion

φ : (B, ζT )→ (E2, ds2E2).

For such immersion to exist, then ζT has to be flat at interior vertices.
Suppose V0 is an interior vertex and V1, . . . ,Vn are adjacent vertices
going around V0. The angles of adjacent edges may be computed using
the cosine law

αi = cos−1

(
L2
i ,i+1 − L2

0,i − L2
0,i+1

2L0,iL0,i+1

)

The curvature at the vertex is the angle excess

K (V0) = 2π −
∑n

i=1 αi

The compatibility condition for (ND) is that K (Vi ) = 0 for all interior
verices.



15. Solvability of the Prescribed Length Problem (ND)

By a theorem of Alexandrov, if K (Vi ) = 0 at all interior vertices, then
there exists an isometric immersion φT : (B, ζT )→ E2 so that
ζT = φ∗T (ds2E2). (One pastes together triangles in turn and checks that
there is a full Euclidean neighborhood surrounding every vertex.)

If a flat prescribed metric ζ is approximated by a polyhedral metric ζT ,
then the curvature at vertices necessarily vanishes, so ζ and ζT are
isometric, although the parameterizations may differ slightly.

Theorem

Let B be a bounded open topological disk in E2 with polygonal boundary
and ζ be a prescribed C2 positive definite matrix function defined in a
neighborhood of B with induced distance ρ. There is a sequence of PL
triangulations, Tk such that the largest ζ-diameter of the triangles of Tk
tends to zero. Let φk be an isometric immersion of (B, ζk). Then for Tk
there are rigid motions mk such that mk ◦ φk → φ : B → E2 converges
uniformly to a map such that ρ(x , y) = |φ(x)− φ(y)| for all x , y.
Moreover, φ ∈ C1 and satisfies (NC).



16. Uniqueness in the Prescribed Length Problem (ND)

Let Xi ∈ Rd , i = 1, . . . , n denote position of the vertex. Let {i , j} ∈ E be
pairs of distinct indices connected by a straight edge. e = #E . Suppose
that the length Lij is prescribed. Then for each edge {i , j} ∈ E , we get
an equation, yielding a system of e equations in dn unknowns

(ND) |Xi−Xj |2 = (Xi−Xj)•(Xi−Xj) = L2
ij

Because rigid motions preserve lengths, rigid motion of a solution is also
a solution.

If there is only one solution of (16) up to rigid motion, we say that the
truss is rigid. A smooth one-parameter family of solutions is called a flex.

There may be several noncongruent configurations that solve (ND),
however they may not allow nontrivial flexes.



(LC) Prescribed Linearized Strain



18. Linearized Strain (LC) and its Compatibility

Linearizing (NC) around φ = Id yields the equation of prescribed
linearized strain. If we consider a variation φ(t) for t ∈ (−ε, ε) with
φ(0) = Id then an infinitesimal deformation u : B → E2 given by

u = ∂φ
∂t

∣∣∣
t=0

satisfies equation of prescribed linear strain

(LC) 1
2

(
∂ui

∂Xj
+ ∂uj

∂Xi

)
= εij

where εij = εji is the strain field. Were u to exist, since u : R2 → R2, the
strain field satisfies the continuum compatibility condition in B,

Ink(ε) = ε11,22 − 2ε12,12 + ε22,11 = 0

where εij ,pq =
∂2εij
∂xp ∂xq

. Note that Ink(ε) agrees with the “linear part” of
Gauss curvature.

Mechanically, compatibility conditions follows from the requirement that
neighboring deformations are consistent and don’t overlap. Thus the
compatibility condition is a property of a material point.



19. Uniqueness in Linearized Strain (LC)

Of course, the deformation fields that are in kernel of the linear strain
operator

(LC)
1

2

(
∂ui

∂Xj
+
∂uj

∂Xi

)
= 0

are Killing Fields, velocity fields whose flow preserves the metric ζ to first
order.



(LD) Prescribed Elongations



21. Prescribed Elongations Problem (LD)

Now let vertex positions Xi ∈ Rd and lengths Lij depend on time t. To
deduce the linearized equations, let the structure be deformed from its
t = 0 position. Differentiating with respect to time, at t = 0,

(LD) (Xi − Xj) • (ui − uj) = λij

for all {i , j} ∈ E . Here the unknown displacements and prescribed
elongations are

ui = Ẋi (0), λij = Lij(0)L̇ij(0)

We denote the system (LD) with e equations, dn unknowns as

Au = Λ

ker A denotes the velocities of vertices which preserve the lengths of bars
up to first order. ker A always contain the velocity fields of rigid motions
which are rd dimensional. For d = 2 this corresponds to velocities of
translations and rotations, so r2 = 3. In d = 3, translations and rotations
are each 3 dimensional so r3 = 6.



22. Prescribing the Elongations.

If ker A only contains velocity fields of rigid motions, then the truss is
said to be infintesimally rigid. If ker A admits other vector fields, then we
say the truss is infinitesimally flexible. The system

Au = Λ

has e equations and dn unknowns. To be solvable, the right side must
satisfy C linear compatibility equations, which we denote BΛ = 0.

James Clerk Maxwell observed that if there are more unknowns than
equations, then the truss could not possibly be rigid. There are at most
dn − rd pivot variables and e equations. Thus there are at least

M = e − dn + rd

compatibility conditions. We call M the Maxwell’s Compatibility Count
If M < 0 then dim ker A > rd and the structure is infinitesimally flexible.
For degenerate systems, it may happen that the structure is
infinitesimally flexible but have M≥ 0.



23. Infinitesimal Rigidity

Figure: Both trusses have e = 7, n = 5 and M = 7− 10 + 3 = 0.

If the truss is infinitesimally rigid, then e ≥ dn − rd = rank A. To solve

Au = Λ

for u, a general Λ will have to satisfy

C = e − rank A ≥ e − dn + rd =M.

compatibility equations.



24. Historical Comments.

M. F. Thorpe and his collaborators have studied the underdetermined
case of Au = Λ. They studied the onset of flexibility in random
structures as network models for solidification of glass.

A. Cherkaev & L. Zhornitskaya and A. Cherkaev, V. Vinogradov &
S. Leelavanichkul studied trusses made up of “waiting links” for damage
wave propagation and impact protection.

A. Cherkaev, A. Kouznetsov and A. Panchenko looked at still states (no
stress) in networks that allow two lengths for each edge in (ND). They
also looked at travelling waves bistable lattices (Nonincreasing Hook’s
Law springs).



25. Counting the Number of Compatibility Conditions (LD)

Theorem (Counting Formula for Triangulated Trusses)

Let B be a PL domain embedded in the plane with triangular faces and
g + 1 disjoint simple boundary curves. Then generically, the truss
consisting of the one-skeleton B(1) has M(B(1)) = 3g + vi , compatibility
conditions where vi is the number of interior vertices of X .

a2 and a11 are the only interior nodes and g = 0 so M = 2. Note that
for this truss, one can remove as many as two edges, e.g. a0a1 and
a0a12, and keep rigidity. But removing, e.g., the single edge a6a7 makes
the figure flexible.



26. Proof

Proof. We shall suppose that the truss is a triangulated domain,
embedded in the plane and bounded by g + 1 pairwise disjoint simple
closed curves. Let f be the number of triangular faces. The Euler
Characteristic for a triangulated domain in the plane is given by the
formula

χ = 1− g = f − e + v .

If vb and vi denote the number of interior and boundary nodes, and eb
and ei the number of boundary and interior edges, we have for disjoint
simple boundary curves

e = eb + ei , v = vb + vi , eb = vb, 3f = eb + 2ei (1)

Substituting Euler’s formula it follows that

3χ = eb − ei + 3vi .

Hence the Maxwell Dimension

M = e − 2v + 3 = 3 + ei − 2vi − vb = 3− 3χ+ vi = 3g + vi ≥ 0.



27. Localizing the Compatibility Conditions

Figure: P is over-determined from two sides giving a compatibility equation.

Compatibility conditions occur in a sub-truss because there are more than
two bars attached to a vertex whose elongations have to be consistent.

The number of compatibility conditions C corresponds to the number of
dependent rows in A. Equations correspond to edges of the truss.



28. Localizing the Compatibility Conditions

Theorem

The number of compatibility conditions C is the maximal number of
edges that can be removed from the truss without losing infinitesimal
rigidity.

Figure: Removing one green edge will destroy infinitesimal rigidity.

However, not every subset of C edges can be removed. The truss in the
figure has C = 1 but the removal of any one of the green edges results in
immediate loss of infinitesimal rigidity.



29. The Smallest Sub-truss Supporting a Compatibility Condition

Figure: Smallest sub-truss supporting compatibility equation in hexagonal grid.

We can compute the compatibility condition for the hexagon in two
ways. Formulate the equations

Au = Λ.

Gaussian Elimination yields a compatibility (solvability) equation on Λ.



30. Geometric Derivation of the Condition

The second method uses plane geometry. If αi = |ai | and
βi = |ai+1 − ai |, where i = 0, . . . , 5 taken mod 6, then by the cosine law
the sum of the central angles must be

2π =
∑5

i=0 cos−1
(
α2
i+1+α

2
i −β

2
i

2αi+1αi

)
Differentiating

0 = −
5∑

i=0

{
2αi+1αi (2αi+1α̇i+1 + 2αi α̇i − 2βi β̇i )
−(α2

i+1 + α2
i − β2i )(2αi+1α̇i + 2αi α̇i+1)

}
4α2

i+1α
2
i

√
1− α2

i+1+α
2
i −β

2
i

2αi+1αi

For the regular unit hexagon, αi = βi = 1. Hence

0 = − 1
2
√
3

∑5
i=0

{
2(2α̇i+1 + 2α̇i − 2β̇i )− (2α̇i + 2α̇i+1)

}
which reduces to the Wagon Wheel Condition:

W =
∑5

i=0 α̇i −
∑5

i=0 β̇i = 0 (2)



31. Compatibility for General Hexagons

For affine hexagons, the compatibility equation is the wagon wheel
condition weighted by the respective side lengths

0 =
∑5

i=0 αi α̇i −
∑5

i=0 βi β̇i

The expansion of both of these in δ has the continuum compatibility
condition as the lowest order coefficient.

A general wagon-wheel condition holds for stars (unions of adjacent
triangles) about interior vertices of any valence.



32. Compatibility near a Damaged Edge.

Figure: Compatibility cells around undamaged and damaged edge.

Four independent compatibility hexagons involve a given interior edge in
an undamaged hexagonal grid. If damaged (edge removed from the grid)
then compatibility regions surrounding the damaged edge are larger.
More edges are involved to overdetermine the vertices near the damage
so the material is weakened. We expect this to be the crux of a weak
formulation, but at the moments we offer only numerical evidence.



33. Relate Compatibility of (LD) to Compatibility of Linearized Strain (LC)

Suppose D ⊂ Rd is a domain. Consider the problem determining an
infinitesimal deformation u : D → Rd by prescribing the strains

(LC) 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
= εij

where εij = εji is a given symmetric strain field. Were such u to exist,
because it is a map of Euclidean Spaces the strain field must necessarily
satisfy the continuum compatibility condition in D,

εij ,pq − εjp,qi + εpq,ij − εqi ,jp = 0

for all indices i , j , p, q where εij ,pq =
∂2εij
∂xp ∂xq

.

This is the linearized equivalent of saying that the pulled back metric of a
map between Euclidean Spaces must have vanishing Riemann curvature.

In d = 2 this boils down to one equation

Ink(ε) = ε11,22 − 2ε12,12 + ε22,11 = 0.



34. (LD) Compatibility Implies (LC) Compatibility

The infinitesimal deformations equations of a hexagon, Au = Λ is a
discretization of the continuum equations for prescribed strain

(LC ) 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
= εij

Its compatibility equation approximates continuum compatibility.

Theorem (Expansion of Compatibility Equation for Regular Hexagons)

Let B3r ⊂ R2 be a disk radius 3r about 0 and H ⊂ B2r be a regular
hexagon with side length δ ≤ r containing 0. Let u ∈ C4(B3r ,R2) be an
infinitesimal deformation satisfying the strain equation (LC). The
wagon-wheel condition (2) for the u-induced rates of change of distances
between vertices of H has the Taylor expansion about the origin

W = −3
4 (ε11,22 − 2ε12,12 + ε22,11) δ2 + 0 · δ3 + o(δ3)

as δ → 0 uniformly in B2r depending on ‖u‖C4(B2r ,R2). So if the discrete
compatibility condition W = 0 holds for all δ, then the continuum
compatibility conditions Ink(ε) = 0 holds.



35. Change of Distance in Terms of Strain

Proof of the Theorem depends on expressing the rate of change of
distance in terms of strains.

Lemma

Let B3r ⊂ R2 be a disk radius 3r about the origin and ai , aj ∈ B3r . Let
u ∈ C4(B3r ,R2) be an infinitesimal deformation with strains given by
(34). If φ(x , t) is a deformation such that φ(x , 0) = x and
φ̇(x , 0) = u(x), then

d

dt

∣∣∣∣
t=0

|φ(ai , t)− φ(aj , t)| =
1

|ai − aj |

∫ 1

0
(ai − aj)

T ε(γ(s))(ai − aj) ds

where γ(s) = ai + s(aj − ai ) for 0 ≤ s ≤ 1 is a parameterization of the
line segment from ai to aj .



36. Proof Lemma on Change of Distance in Terms of Strain

Proof.

d

dt

∣∣∣∣
t=0

|φ(ai , t)− φ(aj , t)|

=
d

dt

∣∣∣∣
t=0

√
(φ(ai , t)− φ(aj , t))T (φ(ai , t)− φ(aj , t))

=
(φ(ai , t)− φ(aj , t))T (φ̇(ai , t)− φ̇(aj , t))√

(φ(ai , t)− φ(aj , t))T (φ(ai , t)− φ(aj , t))

∣∣∣∣∣
t=0

=
(ai − aj)

T (u(ai )− u(aj))√
(ai − aj)T (ai − aj)

=
(ai − aj)

T (u(ai )− u(aj))

|ai − aj |

=
1

|ai − aj |

∫ 1

0
(ai − aj)

T d

ds
u(γ(s)) ds



37. Proof Lemma on Change of Distance in Terms of Strain -

=
1

|ai − aj |

∫ 1

0
(ai − aj)

T∇u(γ(s)) γ̇(s) ds

=
1

|ai − aj |

∫ 1

0
(ai − aj)

T∇u(γ(s)) (ai − aj) ds

=
1

|ai − aj |

∫ 1

0
(ai − aj)

T ε(γ(s)) (ai − aj) ds

where vT (∇u) v = 1
2vT (∇u + (∇u)T ) v = vT ε v , proving the lemma.

To finish, the strains are expressed in Taylor Series about zero. The
elongations of the edges of the hexagon are computed by integrating the
Taylor Series in their expressions. The twelve elongations are put into the
wagon wheel condition and coefficients are collected (using MAPLE!)



38. Genericity of Hexagonal Trusses.

A truss is generic if the number of compatibility conditions equals the
Maxwell Count. Equivalently, the truss is generic if and only if it is
infinitesimally rigid.

For simplicity, we restrict our attention to subtrusses of the standard
hexagonal lattice.

Theorem (Genericity of hexagonal trusses)

Let X be the union of finitely many 2-triangles of the hexagonal lattice.
Suppose that the boundary ∂X consists of a g + 1 disjoint simple closed
curves. Then the truss X is generic: the number of compatibility
conditions equals the Maxwell number. Moreover, a basis for the
compatibility conditions consits of one condition for each hexagon about
an interior vertex and three for each ring-girder around every hole.

c =M = 3g + vi .

The interior vertices may be regarded as material points. The additional
compatibility from each hole is a discrtization feature.



39. Sketch of Proof of Genericity. Decompose into Plates and Girders.

Figure: Decompose Simply Connected Truss into Plates and Girders.

Begin with simply connected trusses. Let H(Vi ) denote an open hexagon
about an interior vertex. Decompose the union of hexagons about
interior vertices into connected components, called plates∐

Pj =
⋃

interior vertex Vi

H(Vi )

The connected components of the remainder are called girders∐
Gi = X − ∪jPj



40. Sketch of Proof of Genericity. - Plates are Generic.

Figure: Order vertices and remove one edge per hexagon, maintaining rigidity.

Argue that each plate is generic. Order the vertices from one end to the
other. Remove on edge of each hexagon in turn, maintaining rigidity as
you build up the hexagons. Thus vi edges may be removed.



41. Sketch of Proof of Genericity. - - Girders are Statically Determined.

Figure: Girders are statically determined.

Argue that each girder is statically determined: it is rigid but without
compatibility conditions. Removing any edge from a girder results in a
flexible (hence infinitesimally flexible) structure.

Then argue that a simply connected truss made up of girders and plates
is generic. Removing an edge from each hexagon in the plates results in
a statically determined truss.



42. Sketch of Proof of Genericity. - - - Multiply Connected Trusses.

Figure: Taking out a ”branch cut” reduces the Maxwell count by three.

For multiply connected domains, argue by induction on the number of
holes. Removing a ”branch cut” reduces the number compatibility
conditions by the number of interior vertices along the cut plus three.



43. Sketch of Proof of Genericity. - - -

Figure: About each hole is a ”ring-girder” which contributes three compatibility
conditions.



44. Asymptotic Compatibility Density (LD).

How much do holes weaken a material? Assume that the material is
periodic. Lets compute the large-scale average compatibility condition
density for damaged material relative to the undamaged material.

For simplicity, let the basic cell Υ by a k × k union of hexagons centered

on ae1 + be2 where a, b = 1, . . . , k and e1 = (1, 0) and e2 = (12 ,
√
3
2 ).

Suppose there are h holes per cell and m interior vertices taken by each
hole. Assuming that cells are bounded by h + 1 pairwise disjoint simple
closed curves, let Ωn be the union consisting of n × n cells slightly
overlapping, centered on ake1 + bke2 where a, b = 1, . . . , n.
The asymptotic compatibility number is

AC = lim
n→∞

c(Ωn)

A(Ωn)
.



45. Asymptotic Compatibility Density (LD). -

The total number of holes is g = n2h. The total number of interior
vertices is

vi = k2n2 − hmn2

The area is base times height minus corner triangles, thus

AC = lim
n→∞

v1 + 3g

A(Ωn)
= lim

n→∞

[k2n2 − hmn2] + 3n2h

nk(nk + 1)
√
3
2

=
k2 − h(m − 3)

√
3
2 k2

.

Note that removing a single edge reduces the number of interior vertices
by four, but introduces a ring girder which supports three compatibility
conditions. Thus m − 3 ≥ 1 compatibility conditions are lost for each
hole.



46. Asymptotic Compatibility Density (LD). - -

Figure: 13× 13 Period Cell with Holes of Area 18 Triangles (k = 13, p = 4).



47. Asymptotic Compatibility Density (LD). - - -

AC =
k2 − h(m − 3)

√
3
2 k2

, ACmany 1-link holes =
k2 − p2 + 2p − 1

√
3
2 k2

.

The asymptotic compatibility depends not just on the total area removed
from the cell. Taking out more holes of the same total area has larger
AC , a proxy for material resilience.

For example if one link is removed, m = 4 and triangle has area 2
triangles. Removing h = (p − 1)2 one-link removes m = 4 interior
vertices per hole and has the same area 2(p − 1)2 triangles as the
(p − 1)× (p − 1) rhombus, which removes h = 1 hole and m = p2

interior vertices. If the hole is a (p − 1)2 × 1 trapezoid, it also has the
same number of triangles, h = 1 but removes m = 2p2 − 4p + 2 interior
vertices.

ACrhombus =
k2 − p2 + 3
√
3
2 k2

, ACtrapezoid =
k2 − 2p2 + 4p − 5

√
3
2 k2

.



48. Deformation of Trusses Under Loads. Numerical Study.

For simplicity, all edges of the truss have unit length. The infinitesimal
deformations u are related to the elongations of the edges via Au = Λ
where A is a e × dn matrix of rank r . Let us denote the compatibility
conditions BΛ = 0 where B is an (e − r)× e matrix. Hooke’s Law says
the forces C Λ along the edges are proportional to the elongations where
C = diag(c1, . . . , ce) is the e × e diagonal of positive spring constants
matrix. ATC Λ are forces at the vertices. K = ATCA is the stiffness
matrix which is nonnegative definite with rank r .

Then the force balance is ATC Λ = F where F is the vector of tractions
applied at the e vertices. It has a unique solution if infinitesimal flexes
are eliminated by fixing dn − r unknowns.



49. Deformation of Trusses Under Loads.

The equation for balanced forces may be solved for elongations or
displacements.

ATC Λ = F ; ATC Λ = F

BΛ = 0. Λ = Au

The analagous equations for linearized elastostatics are in terms of
strains ε or infinitesimal displacements u are

div · c · ε = ρf ; div · c · ε = ρf

∇× (∇× ε) = 0. ε =
1

2
(∇Tu +∇u)

where ρ is mass density, f is an external body force and c(x) is the
elasticity tensor.



50. Numerical Experiments

We tested the whether the localized geometry of compatibility conditions
helps to predict the propagation of damage in a grid structure. If some
edges are broken in a hexagonal truss under loading, where do the largest
(positive or negative) stresses occur? The most highly stressed edges
occur next to the damaged edge as we expected.

If we consider a sequence of of trusses under the same loading, starting
by breaking an arbitrary edge and then sequentially breaking the most
stressed edges one after the other, we see that the damage propagates
through the structure by growing from the initially damaged edge.



51. Numerical Experiment Details

To eliminate rigid motions, we fixed vertices at the edge of the truss.
The stiffness of each edge was initially 1. For simplicity, a damaged edge
is not removed, but rather its stiffness is weakened to .001.

To visualize the bending, the computed deformations are added to the
undeformed positions for depicting the behavior to loading. Note that
this linearized effect is exaggerated and distorted, but gives an intuitive
idea of the deformations.

The highest stresses that occurred in the truss were actually next to the
pinned nodes at the boundary. Since we were interested in the vicinity of
damaged edges, we ignored the stresses near these pinned nodes and
removed edges near the damage.



52. Compatibility in Linearized Elasticity

Figure: Pinned Verices and Applied Tractions.



53. Compatibility in Linearized Elasticity

Figure: Deformation of Undamaged Truss. Blue=Compression, Red=Tension



54. Compatibility in Linearized Elasticity

Figure: Artificially Break an Edge. Neighboring Region.



55. Compatibility in Linearized Elasticity

Figure: Resulting Deformation. Flag Most Stressed Neighbors.



56. Compatibility in Linearized Elasticity

Figure: Break Them with Resulting Deformation. Flag Most Stressed Neighbors.



57. Compatibility in Linearized Elasticity

Figure: Break Them with Resulting Deformation. Flag Most Stressed
Neighbors..



58. Compatibility in Linearized Elasticity

Figure: Break Them with Resulting Deformation. Flag Most Stressed
Neighbors..



59. Compatibility for (LD) in Three Dimensional Lattice

For a three dimensional “hexagonal” grid system, we try the vertices
corresponding to a hexagonal close pack of three space by spheres. One
of these is the face-centered cubic lattice

Figure: Face-Centered Cubic Closepack by Spheres.



60. Star of Sphere-pack is a Cubeoctahedron

Figure: Connecting Centers of the Closest Neighbors Gives a Cuboctahedron.



61. Compatibility Conditions of a Cuboctahedron

There are four compatibility conditions for a cuboctahedron.

Figure: There is a Wagon-Wheel Condition for Each Planar Hexagon.

This is surprising because there are “three” compatibility conditions for
(LC) in R3. Indeed perturbing locations of the vertices of the
cuboctahedron resulted in three compatibility conditions on the
perturbed truss.

One gets a three dimensional spherical analog of the wagon wheel
condition by adding all four hexagons 2

∑12
i=1 α̇i =

∑24
j=1 β̇j .



62. Cuboctahedron is Infinitesimally Flexible.

But the regular cubeoctahedron turns out not to be infinitesimally rigid.
It allows an infinitesimal flex which twists each of the faces.

Figure: Cuboctahedron is Infinitesimally Flexible. (Run animated GIF.)

So the matrix in Ax = Λ has decreased rank requiring an extra
compatibility condition on Λ.



63.

Thanks!



64. Compatibility in Linearized Elasticity


