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Solving Problems Without Solutions
Part 1

One might first ask, "Why study applied math?" As an answer, the speaker suggests:

Applied math relates to many different and otherwise independent research topics. It deals with "real"
and socially demanding problems for which solutions have lasting significance. It relates most readily to
the fields of: physics, biology, astronomy, material science, geo-science, informatics, and finance.
Regardless of the broad area to which math can be applied, the methods of application themselves are
effectively unified.

There is great intellectual freedom within applied mathematics. There are no a priori rules and frames
and the methods are diverse. We can choose to apply methods of: differential and integral equations,
statistics, modeling, differential geometry, scientific computing, analysis, and others to tackle our chosen
problems.

There are novel and diverse methods constantly emerging and being tested. Some of these are: game
theory, pseudo-differential operators, nonconvex variational problems, computational methods, and
optimization theory.

Most importantly, there are problems which, as stated, do not have solutions. Regardless, the applied
mathematician must find some meaningful way to provide an answer.

Part 2

It is important, then, to ask the right kind of question so that an answer can be obtained. Examples of
such questions are:

1) Why does wood in the trunks of some trees grow in a spiral pattern?

2) How can one see through a wall without destroying it?

3) What is the shape of the optimal dome with respect to certain definitions of optimality?

4) What properties will ensure that an automobile bumper absorbs a maximal amount of energy without
being damaged?

5) How does one model photovoltaic processes theoretically?

6) Can the effects of climate change be predicted and modeled?

7) How does one design a band-gap cable to transport signals without aberrations?

Part 3

We look first at how to describe the spiraling pattern of woods in certain trees’ trunks. The problem is
solved by developing a theory of stresses in helicoidal cylinders that is now also used for cables. In
short, spiraling provides an advantage for the tree in terms of strength to resist damage from high winds,
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heavy snows, or irregular rooting. It also increases the distance water must travel through the tree for
photosynthesis. We expect that an optimal angle of spiraling exists and should be selected for in the
evolution of the tree. Through the theory, as developed using the methods of applied mathematics, such
an optimum angle can be deduced to meet certain criterion and can be shown to be consistent with
natural data.

Part 4

We now look at the problem of the optimal hole in an elastic plane. If one puts a single hole in a
membrane which has uniform load at infinite distance from the hole, it is trivial to see that the optimal
shape of the hole is a circle. For uneven loads the obvious adjustment is to make it an ellipse with its
small axis parallel to the direction of minimal loading. A crack-like or "line" hole is optimal is the load
is applied on only one direction. In the case of multiple holes we can use techniques of complex
analysis to map the many holes to a single-hole problem which can be solved. A problem arises,
however, when one considers loads of differing signs.

What if the membrane is stretched in one direction but compressed in the other? Conditions for an
optimal shape require piece-wise constant tension that keeps its absolute value constant everywhere on
the boundary and jumps in certain points of the contour. Of course, this means that the optimal shape
has edges of some kind. They can be found to be like slightly deformed rectangles such that each edge
has a slight curvature and therefore a slightly larger than right-angle joint with its neighboring edge.

Part 5

We now look at some classical logical paradoxes to emphasize certain themes in applied mathematics.

What is the largest natural number? For the largest natural number , we know it must satisfy, for all
, that . But is the largest so which implies that . This is clearly a problem.

We’ve shown that the largest natural number is also the smallest. The problem is that we assumed that
such an element exists. A way around this problem is to consider either regularization of the problem, or
relaxation of its constraints. To regularize the problem would be to consider only integers less than
some chosen maximum. To relax the constraints we could consider, perhaps, transfinite numbers.
Either method removes the apparent paradox and contradiction.

Another illuminating example is the problem to find a function with the constraint that

such that is maximal. Clearly but how do we

determine which function maximizes the integral? In fact such a problem has no solution unless we
either regularize the problem by requiring that for all or relaxing the constraints to include
distributions such as the delta function.

The problem of differentiating leads to a similar set of possible solutions. We either smooth the
function around or we introduce the idea of a subderivative at that point.

Each of these paradoxes/problems was addressed by either regularization or relaxation. Generally
speaking the process of regularization is to add constraints to the problem to prevent it form reaching
some undesirable limiting case. The problem with this approach is that the new solution will almost
always depend heavily on the chosen regularization and such a constraint may be rather artificial.
Relaxation effectively increases the generality of the potential solution to the problem, usually making
the solution much more complex. Successive relaxation may even lead to new fields of study for an
otherwise simplistic problem.



One can now use these principles to solve the following problem: What surface, connecting two parallel
circles in will have a minimal surface area? Again, the problem can be approached by either
requiring that this surface has some minimal radius along its axis, or allowing limiting cases.

End of lecture
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