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3. Boundary Layer

Moving a hull through water or an wing through air requires overcoming
a drag force. This force results from viscosity, which is the ratio how
much a fluid shears for a given force. The fluid sticks to the fluid
boundary and is dragged along by the motion in a small boundary layer.
Outside the layer, the fluid motion is more or less the wing velocity U0.

Flow in the boundary layer near the wing tip is smooth or laminar and
transitions to turbulent farther down the wing. Boundary layer thickness
and velocity profiles as a function of distance to the wing are shown.



4. An Example of Applied Mathematics

A model of a laminar boundary layer is presented here. Starting from the
incompressible Navier-Stokes Equations which describe the motion of a
viscous fluid in the plane, we neglect small terms to derive the boundary
layer equations of Prandtl. By simplifying the geometry following Blasius,
the boundary layer equation reduces to an boundary value problem for
ordinary differential equations. Following Serrin, we solve the ODE for
the velocity in the boundary layer [see Wilson].

We may regard our study of the boundary layer as an example of doing
applied mathematics. Using expertise in fluid mechanics, the appropriate
physical model is simplified by omitting negligible quantities derived by
asymptotic analysis and experiments. By further simplifying the
geometry, we obtain the equations of Blasius, which are tractable by
calculus methods. Finally, last but not least, the calculation is informed
by mathematical theorems about the short and long time existence,
uniqueness and regularity of solutions of these ODE’s. These theorems
are proved in Math 5410.



5. Navier Stokes Equations

The equations of fluid motion are studied in the fluid region of physical
two and three dimensional space. Restricting to d = 2, fluid motion is
described by the fluid velocity vector function

(
u(x , y , t), v(x , y , t)

)
at

time t and p(x , y , t) is the pressure. If the flow is laminar and not
turbulent, which is the case if motion is not too fast, the Navier Stokes
Equations are

ut + u ux + v uy = −1
ρpx + ν(uxx + uyy )

vt + u vx + v vy = −1
ρpy + ν(vxx + vyy )

where ρ is the density, p is the pressure and ν os the kinematic viscosity.



6. Incompressible Flow

A fluid is incompressible if a blob of fluid does not change its area under
the flow, thus it satisfies the continuity condition

ux + vy = 0. (1)

If we denote by Φ(x , y , t) the position at time t of a fluid particle that
starts at (x , y), the rate of change of area of a blob G ⊂ R2 at time t,
Φ(G , t) ⊂ R2, is given by the total flux through the boundary ∂Φ(G , t).
Using the Divergence Theorem

d
dt A(φ(G , t)) = d

dt

∫
Φ(G ,t) dx dy =

∫
∂Φ(G ,t) unx + vnyds

=
∫

Φ(G ,t) ux + vy dx dy

where (nx , ny ) is the unit outward normal vector at (x , y) ∈ ∂Φ(G , t)
and ds is arclength. Assuming the flow does not change the area,
d
dt A = 0 for every blob G , the velocity must satisfy (1).



7. Incompressible Stationary Navier Stokes Equations

In addition to incompressibility, we assume that the motion is stationary,
which means that (u, v) does not depend on t, and that the density is
constant throughout, ρ = ρ0

The resulting incompressible Navier-Stokes equations reduce to

ux + vy = 0

u ux + v uy = − 1
ρ0
px + ν(uxx + uyy )

u vx + v vy = − 1
ρ0
py + ν(vxx + vyy )

(2)



8. Boundary Conditions for Prandtl’s Boundary Layer Equations.

Let us consider a viscous incompressible fluid which flows parallel to the
x-axis with constant speed U∞. To simplify the geometry, imagine that
the wing is a flat plate immersed in the fluid in such a way that that the
coordinate are relative to a wing which we model by the half axis
{(x , y) ∈ R2 : x ≥ 0, y = 0} and we consider fluid in the positive
halfplane y > 0. The fluid has zero velocity (no slip boundary condition)
at the wing

u(x , 0) = v(x , 0) = 0 for x > 0.

The wake is not very pronounced at large distances from the plate. This
gives the boundary condition, expressed as

lim
y→∞

u(x , y) = U∞, lim
y→∞

v(x , y) = 0. (3)

for each fixed x > 0.



9. Naive Deduction of Prandtl’s Boundary Layer Equations.

Here is a simplified deduction of Prandtl’s Boundary Layer Equations.
Since v is relatively small in the boundary layer, the last equation of (2)
says p is practically independent of y . Thus we may neglect px since this
vanishes for large values of y where the stream is unaffected by the plate.
Also, since u and ux vanish at the interface, it follows that uxx is
negligible compared to uyy in the boundary layer. Thus we may neglect
the red terms of (2) resulting in the The resulting equation is the Prandtl
Boundary Layer Equations.

ux + vy = 0

u ux + v uy = − 1
ρ0
px + ν(uxx + uyy )



10. Ludwig Prandtl

Figure: Ludwig Prandtl (1875–1953)

Prandtl received his Dr. Phil. at
Munich Technical University in 1899
under the guidance of August Föppl.
He began teaching in Hannover. In
1904 he delivered a ground breaking
paper describing the boundary layer
and its importance for drag and
streamlining, explaining the concept
of stall for the first time.

For this, he was promoted to
Director of Technical Physics in
Göttingen. Under his guidance, it
became a powerhouse of
aerodynamics, leading the world
until the end of World War II. Its
spin off became the Max Planck
Institute for Dynamics and
Self-Organization.



11. Prandtl’s Boundary Layer Equations.

Start from the Prandtl Boundary Layer Equations

ux + vy = 0

u ux + v uy = ν uyy

u = v = 0 for y = 0, u → U∞ as y →∞.

(4)

Assuming that the velocity is given by a stream function, we
automatically satisfy the incompressibility condition, namely, suppose
there is a function w(x , y) such that

u = wy

v = −wx .

This vector field is perpendicular to the gradient ∇w = (wx ,wy ) thus the
level sets of the stream function are flow lines of the fluid. Substituting,
we find that

wy wxy − wx wyy = νwyyy , (5)

wx = wy = 0 at y = 0 and x > 0, (6)

wy → U∞ as y →∞ for all x . (7)



12. Stream Function.

(5) admits a similarity solution. Assume we the variables scale by

x = λax̃ ,

y = λbx̃ ,

w = λc w̃ .

Substituting into (5) yields

λ2c−a−2bw̃y wx̃ ỹ − λ2c−a−2bw̃x̃ wỹ ỹ = νλc−3bwỹ ỹ ỹ

so
w̃y wx̃ ỹ − w̃x̃ wỹ ỹ = νλ−c+a−bwỹ ỹ ỹ

implying two conditions are

w̃y wx̃ ỹ − w̃x̃ wỹ ỹ = νλ−c+a−bwỹ ỹ ỹ

λc−bw̃ỹ = 0 at ỹ = 0 and x̃ > 0.



13. Similarity Solution.

To be invariant, for any choice of λ the function w̃ must satisfy the
Prandtl equations. This implies we should take

−c + a− b = 0

c − b = 0.

Hence b = a
2 and c = a

2 . Taking a = 1, the functions

w(x , y ;λ) = λ1/2w̃
(
λ−1x , λ−1/2y

)
are all solutions of (5) for every λ is w is a solution.



14. Similarity Solution.

This suggests that we seek solutions in a class of functions that has the
same invariance. Thus for example, we make the Ansatz

w(x , y) = Bx1/2f (t), where t =
Ay√
x

(8)

where A and B are positive constants. For x > 0 we have t → 0 if and
only if y → 0. Substituting,

wx =
B

2
x−1/2f − AB

2
x−1yf ′, wy = ABf ′

Thus for x > 0, the boundary conditions (6) and (7) are

f (t) = f ′(t)→ 0 as t → 0, (9)

f ′(t)→ U∞
AB

as t →∞ for all x . (10)



15. Blasius Equation.

Substituting into (8) into (5),

−1

2
Bf f ′′ = νAf ′′′.

Supposing that
1

2
B = νA and

U∞
AB

= 1

so

A =

(
U∞
2ν

)1/2

, B = (2νU∞)1/2 ,

we have

w(x , y) = (2νU∞x)1/2 f (t), where t =

(
U∞
2νx

)1/2

y . (11)

(11) solves (5), (6), (7) provided f solves the Blasius Equations:

f ′′′(t) + f (t)f ′′(t) = 0 for t > 0,

f (0) = f ′(0) = 0,

f ′(t)→ 1 as t →∞.

(12)



16. Paul Richard heinrich Blasius

Figure: Heinrich Blasius (1883–1970)

Born in Berlin, Blasius, the sixth
student of Prandtl, completed his
Dr. Phil. at Gottingen in 1907.
Blasius provided a mathematical
basis for boundary-layer drag but
also showed as early as 1911 that
the resistance to flow through
smooth pipes could be expressed in
terms of the Reynolds number for
both laminar and turbulent flow.
After six years in science he changed
to Ingenieurschule Hamburg (today:
University of Applied Sciences
Hamburg) and became a Professor.



17. Solving the Blasius Equation.

The Blasius problem is a boundary value problem since the values of the
solution are specified at two points, at the origin and at infinity. We shall
modify a solution of an initial value problem. That is, we consider

z ′′′(t) + z(t)z ′′(t) = 0 for t > 0,

z(0) = z ′(0) = 0, z ′′(0) = γ

and show that when γ = 1 the solution almost satisfies (12), but with a
different value at the boundary. By changing scale we obtain the desired
solution of (12).

We claim that the solution z(t; γ) exists for all time t > 0 and all γ > 0.



18. Solving the Blasius Equation.

We shall follow Serrin’s method as described by Wilson. The existence of
a solution follows the big theorem proved in Math 5410.

Theorem (Existence and Uniqueness Theorem)

Let F (t, y1 . . . , yn) be a continuously differentiable function defined on
D = R× Rn and (t0, x0, . . . , xn−1) ∈ D. Then there is a unique maximal
continuously differentiable solution y(t) = ψ(t) of the initial value
problem

dny

dtn
= F

(
t, y ,

dy

dt
,
d2y

dt2
, . . . ,

dn−1y

dtn−1

)
,

y = x0,
dy

dt
= x1, . . . ,

dn−1y

dtn−1
= xn−1, when t = t0.

The interval of existence is an open interval τ− < t < τ+. If τ+ <∞,
then (ψ,ψ′, ψ′′, . . . , ψ(n−1)) becomes unbounded as t → τ+.



19. Solving the Blasius Equation.

According to the existence theorem, for any γ > 0, the Blasius IVP

y ′′′(t) = −y(t)y ′′(t),

y(0) = y ′(0) = 0, y ′′(0) = γ
(13)

has a unique thrice continuously differentiable solution ψ(t; γ) defined on
the interval 0 ≤ t < τ+(γ).

Suppose that it is known that τ+ =∞ and that lim
t→+∞

ψ′(t, 1) = L2

exists, where λ > 0. Then the Blasius Equation (12) may be solved by
making the change of variable

y(s) =
1

L
ψ
( s
L
, 1
)
.



20. Blasius Equation.

To show τ+ =∞, we first show that ψ′′ > 0 for 0 < t < τ+. If this is
not the case, since we are given that ψ′′(0) = 1, there is a first time
0 < t0 < τ+ where ψ′′(t0; γ) = 0. Let

A = ψ(t0; γ), B = ψ′(y0; γ), φ(t) = A + B(t − t0).

Then both ψ(t, γ) and φ(t) satisfy the initial value problem

y ′′′(t) = −y(t)y ′′(t),

y(t0) = A, y ′(y0) = B, y ′′(t0) = 0

on [0, t0]. Consequently, by the uniqueness of solutions of the IVP,
φ(t) = ψ(t) for 0 ≤ t < τ+. This is a contradiction because
ψ′′(0) = γ > 0 but φ′′(0) = 0.



21. Blasius Equation.

We show now τ+ =∞. From ψ′′ > 0 on [0, τ+), it follows by integration
that ψ′ and ψ are positive and increasing on [0, τ+). Multiplying (13) by
the positive integrating factor exp(

∫
ψ(s) ds),(

e
∫ t

0 ψ(s;γ) dsψ′′(t; γ)
)′

= e
∫ t

0 ψ(s;γ) ds
(
ψ′′′(t; γ) + ψ(t; γ)ψ′′(t; γ)

)
= 0

implies the product is constant e
∫ t

0 ψ(s;γ) dsψ′′(t; γ) = ψ′′(0; γ) = γ so

ψ′′(t) = γe−
∫ t

0 ψ(s) ds . (14)

Thus ψ′′ is decreasing and

0 < ψ′′ < γ on 0 < t < τ+ (15)

Integrating this inequality twice yields

0 < ψ′ < γt, 0 < ψ < γ
2 t

2, on 0 < t < τ+.

This says the solution stays bounded and does not blow up on a finite
interval so the existence time has to be infinite τ+ =∞ by the existence
theorem.



22. Blasius Equation.

Next we show that lim
t→+∞

ψ′(t) exists. We already know that ψ′(t) is

monotone increasing. Thus we only need to show that it is bounded
above. For t ≥ 1,

Let c = ψ(1) > 0. Using ψ > 0 and is increasing for t > 0, we have
ψ(t) ≥ c for t ≥ 1. By (14)

ψ′′(t) = γe−
∫ 1

0 ψ(s) ds−
∫ t

1 ψ(s) ds ≤ γe−
∫ t

1 c ds = e−c(t−1).

Integrating, for t ≥ 1,

ψ′(t) ≤ ψ′(1) + γ

∫ ∞
1

e−c(s−1) ds = ψ′(1) +
γ

c

which is bounded, finishing the argument that lim
t→+∞

ψ′(t) exists. This

completes the solution of the Blasius Problem.



23. Numerical Solution of Blasius Equation (13).

0.5

0.5

1.0

1.5

2.0

2.5

0.0
1.0 1.5 2.0 2.5 3.00.0 t

x,
y,
z

At fixed x , t is proportional to y , red= f (t), blue=f ′′(t), green= f ′(t)
which is proportional to fluid velocity in the boundary layer.



24. Boundary Value Problem for the Blasius Equation.

Here is another two point boundary value problem for the Blasius
Equation, with the condition at infinity replaced by a condition at a finite
time T = 1. For 0 ≤ t ≤ T ,

f ′′′(t) + f (t)f ′′(t) = 0

f (0) = f ′(0) = 0

f ′(1) = 1.

(16)

As before, we consider the corresponding initial value problem with γ > 0

z ′′′(t) + z(t)z ′′(t) = 0

z(0) = z ′(0) = 0, z ′′(0) = γ

We use a shooting method: we continuously vary γ starting from zero
and show that the solution at the endpoint ψ′(1; γ) varies continuously
from small to arbitrarily large values. Thus, for the correct choice of
γ = γ0, the solution is the trajectory that satisfies ψ′(1, γ0) = 1.



25. Boundary Value Problem for the Blasius Equation.

We have already established that the solution exists on 0 ≤ t ≤ 1 for
every γ > 0. It also depends continuously on initial conditions.

Theorem (Continuous Dependence Theorem)

Let F (t, y1 . . . , yn) be a continuously differentiable function defined on
D = R× Rn and (t0, x0, . . . , xn−1) ∈ D. The unique maximally defined
solution y(t) = ψ(t; t0, x0, . . . , xn−1) of the initial value problem

dny

dtn
= F

(
t, y ,

dy

dt
,
d2y

dt2
, . . . ,

dn−1y

dtn−1

)
,

y = x0,
dy

dt
= x1, . . . ,

dn−1y

dtn−1
= xn−1, when t = t0.

is a continuously differentiable function in the set {(t, t0, x0, . . . , xn−1) ∈
R× R× Rn : τ−(t0, x0, . . . , xn−1) < t < τ+(t0, x0, . . . , xn−1)}.

Thus the solution of the Blasius problem ψ(t, γ) depends continuously
on (t, γ) ∈ [0, 1]× (0,∞).



26. Boundary Value Problem for the Blasius Equation.

We now show that ψ(1, γ) < 1 for γ sufficiently small and ψ(1, γ) > 1
for γ sufficiently large. By the Intermediate Value Theorem, there is an
in between γ0 for which ψ(1, γ0) = 1. Consequently z(t) = ψ(t; γ0)
solves the Boundary Value Problem (16).

Recall (15), for all t ∈ [0, 1] and γ > 0 the solution ψ′′ is decreasing and

0 < ψ′′ < γ, 0 < ψ′ < γt, 0 < ψ < γ
2 t

2.

If γ < 1 then ψ′(1, γ) < 1. Suppose on the other hand that γ > 1 is so
large that

6
(

1− e−γ/6
)
> 1.

Since ψ′′ > 0, rewriting the Blasius Equation,

d

dt
ln(ψ′′) =

ψ′′′

ψ′′
= −ψ > −γ

2
t2,

and integrating, we find using ψ′′(0, γ) = γ,

ln
(
ψ′′(t, γ)

)
− ln(γ) = −

∫ t

0
ψ(s; γ) ds > −γ

6
t3.



27. Boundary Value Problem for the Blasius Equation.

Exponentiating,

1

γ
ψ′′(t, γ) = e−

∫ t
0 ψ(s;γ) ds > e−γs

3/6.

Finally integrating, and using s3 ≤ s for 0 ≤ s ≤ 1,

ψ′(t, γ) > γ

∫ 1

0
e−γs

3/6 ds ≥ γ
∫ 1

0
e−γs/6 ds = 6

(
1− e−γ/6

)
> 1

by our assumption on γ. The existence of the solution now follows from
the Intermediate Value Theorem as described.
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