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5. Polygons and Polyhedra.

Figure 2: Polyhedron.

A polygon is a connected open plane
set whose boundary consists finitely
many different line segments or rays
glued end to end. A polyhedron is a
piecewise flat surface in three space
consisting of finitely many planar
polygons glued pairwise along their
sides. A polyhedron is assumed to
be closed: each side of every
polygon is glued to the side of
another polygon.
We shall abuse notation and call
polyhedron together with its interior
a “polyhedron.”



6. Restrict Attention to Spherical Polyhedra.

Assume our polyhedron P is a triangulated sphere with V vertices. It is
determined as the convex hull of V points in R3. Certain pairs of points
determine lines which meets P in an edge and certain triples determine
planes that meet P in a face. P is determined by the coordinates of all
vertices strung together

(p1, . . . , pV ) ∈ R3V .

Since three side edges determine a triangular face, we may also view the
polyhedron as being given as the union of these outer edges .

More generally, a framework is an arbitrary set of vertices in R3 and a list
pairs of vertices connected by edges.

Rigidity Conjecture [Euler, 1766] All polyhedra are rigid.

It turns out that most polyhedra are rigid, but there are flexible examples
as we shall show.

We now make precise two notions: “rigidity” and “infinitesimal rigidity.”



7. Congruence of Polyhedra. Rigid Motions.

Two polyhedra (p1, . . . , pV ) and (q1, . . . , qV ) are congruent if there is a
rigid motion h : R3 → R3 such that hP = Q. Equivalently

|pi − pj | = |qi − qj | for ALL pairs (i , j), 1 ≤ i , j ≤ V ,

where | · | is the Euclidean norm of R3.

Rigid Motions in R3 are given by rotations, reflections, and translations.
Given a fixed rotation matrix R, reflection ± about the origin and
translation vector T , then the rigid motion is given by

h(p) = ±Rp + T .

The rotations matrix is special orthogonal: it satisfies RTR = I and
det(R) = 1. It moves the standard basis vectors to new orthonormal
vectors that form its columns.



8. Velocity of a Rigid Motion.

Lets move our polyhedron through a family of rigid motions. If R(τ) and
T (τ) are a smoothly varying matrices and vectors with R(0) = I and
T (0) = 0, it turns out that the velocity of a point undergoing the
corresponding family of rigid motion is given by

d

dτ

∣∣∣∣
τ=0

(
±R(τ)p + T (τ)

)
= ±r × p + δ

where r is the instantaneous rotation (angular velocity) vector and δ is
the instantaneous translational velocity vector.

R′(0) is skew symmetric so may be written as cross product:

R′(0)p = r × p.



9. Isometric Surfaces.

In contrast, P and Q are isometric if each face of P is congruent to the
corresponding face of Q. Assuming each face is triangular, this is
equivalent to

|pi − pj | = |qi − qj | for all pairs (i , j) ∈ E ,

where the set of of pairs of vertices corresponding to edges is given by

E = {(i , j) : 1 ≤ i , j ≤ V and an edge of K connects vi to vj}

Congruent =⇒ Isometric.



10. Isometric but Not Congruent.

Figure 3: Houses P and Q.

P is a house with roof on top and Q is reconstructed from the same
faces except the roof is installed hanging down.

P and Q are isometric but not congruent.



11. First Notion: Rigidity.

P is Rigid if any continuous deformation of P that keeps the distances
fixed between any pairs of points in each surface triangle (i.e., the edge
lengths fixed) keeps the distances fixed between any pairs of points on
the surface (i.e., all pairs, not just the edges). In other words, any
continuous family of isometries must be a family of congruences.

A deformation is called isometeric or a flex if it preserves lengths of
edges. The houses are not an example of a flex because there is no
continuous family of isometries deforming one house to the other.



12. Bricard Octohedron is Flexible.

Vertices of skew rectangle ABCD pass through circle with center O. Its
radius changes as rectangle flexes in the plane. Choose points E and E
above and below O. The lengths AE , BE , CE , DE are equal. As ABCD
flexes these segments meet at point above O so four upper triangles flex.
Similarly four lower triangles flex. Found by Bricard in 1897, this
octahedron is not embedded since triangles ABE and CDE intersect.



13. Connelly’s Flexible Polyhedron.

Figure 4: R. Connelly

The fact that embedded polyhedra can flex
was settled by R. Connelly who constucted
a flexing polyhedron in 1978. Connelly’s
original example has a triangulation with 62
triangles.



14. Steffen’s Flexible Polyhedron.

Figure 5: Pieces of an Embedded Flexible Polyhedron

This gluing diagram gives Klaus Steffen’s 1978 simplification. One takes
two modified copies of the Bricard octahedron with a pair triangles
removed ahdeg and bcdef . The resulting “crinkled” disks flex. These
disks are glued to a third disk (two 12 by 17 triangles.).



15. Second Notion: Infinitesimal Rigidity.

A stronger notion of rigidity the liniarized version, infinitesimal rigidity, is
closer to what an engineer would consider to mean rigidity of a
framework.

A family (zi , . . . , zV ) of vectors in R3 is called an infinitesimal
deformation of P if

(pi − pj) • (zi − zj) = 0 for i < j and (i , j) ∈ E .

We always have the infinitesimal deformations that come as velocities of
rigid motion. If we fix instantaneous rotation and translation vectors and
let δi = r × pi + t be the velocity of vertices under rigid motion then

(pi − pj) • (δi − δj) = (pi − pj) • [r × (pi − pj)] = 0

for all i , j . These infinitesimal congruences are the trivial deformations.



16. Motivation.

One imagines that the vertices deform along a differentiable path p(τ)
where τ ∈ (−ε, ε) in such a way that edge lengths are constant to first
order at τ = 0. It follows that for (i , j) ∈ E ,

0 =
d

dτ

∣∣∣∣
τ=0

(
pi (τ)− pj(τ)

)
•

(
pi (τ)− pj(τ)

)
= 2

(
pi (0)− pj(0)

)
•

(
p′i (0)− p′j(0)

)
.

So in this situation the velocities p′i (0) are an infinitesimal deformation.

If P moves as a rigid body then p(t) = R(t)p(0) + T (t) then
p′(0) = r × p(0) + δ is an infinitesimal congruence. If the only
infinitesimal deformations of P are infinitesimal congruences, then we say
P is infinitesimally rigid.

Otherwise P admits an infinitesimal deformation that is not an
infinitesimal congruence, which is called an infinitesimal flex.



17. Example of Infinitesimally Flexible Polyhedron.

Figure 6: Infinitesimal Flex of Pyramid

Let P be a square pyramid whose base is subdivided into four triangles
centered at p1. Let δ1 be perpendicular to the base and δj = 0 for j 6= 1.
Then δ is an infinitesimal flex of P.

However, P is rigid.



18. Gluck’s Example of Infinitesimally Flexible Polyhedron.

Figure 7: Gluck’s Infinitesimally flexible
Octohedron

The non-convex quadrilateral ABCD
flexes in the horizontal plane. Let B ′

be the intersection of the lines AB
and CD. Let D ′ be the intersection
of the lines AD and BC . Let E be a
vertex above a point on the segment
B ′D ′. F is a vertex below this line.
ABCDEF is octhedron P gotten by
suspending the quadrilateral from E
and F . It turns out that P is
infinitesimally flexible.

It also turns out that P is rigid.



19. Algebraic Formulation of Infinitesimal Rigidity. Euler’s Formula.

From here on in, we assume that P is a polyhedral surface homeomorphic
to S2. If V is the number of vertices, E the number of edges and F the
number of faces in the triangulation of P, then Euler’s Formula gives

V − E + F = 2.

Assuming each face is triangular, this means there are two faces for each
edge and three edges for each face so 3F = 2E . Hence

E = 3V − 6.

Define the rigidity map L : R3V → R3V−6 for i < j and (i , j) ∈ E by

L(z) =
(
· · · , (pi − pj) • (zi − zj), · · ·

)
Lz = 0 is a system of 3V − 6 equations in 3V unknowns. It has the 6
dimensional infinitesimal congruences in its kernel.

Theorem 1.

If P does not degenerate to a line in three space, then P is infinitesimally
rigid if and only the kernel of L : R3V → R3V−6 consts of the
infinitesimal congruences, which is equivalent to dim(ker(L)) = 6.



20. Third Notion: ω-Bending.

Let ωij be real numbers such that for each vertex vi ,

ωij = ωji (1)

0 =
∑

j :(i ,j)∈E

ωij(pi − pj) for all 1 ≤ i ≤ V . (2)

We call this set of numbers ω a ω-bending of P. If P admits a non-zero
ω-bending, then we say P is ω-flexible.

Suppose that p(t) is a differentiable deformation of p(0) = P and that
αij(t) be the dihedral angle between the two triangles along edge (i , j)
measured from the inside. Then the angular velocity of a face with
respect to its neighbor across edge pipj at t = 0 is

w(i , j) = α′
ij(0)

pi (0)− pj(0)

|pi (0)− pj(0)|
.



21. Motivation.

If we hold pi (t) fixed and consider the succession of edges pipjk

sequentially around pi for k = 1, . . . ,m, then w(i , jk) is the velocity of
triangle pipjk pjk+1

around pipjk−1
pk . It follows that∑`
k=1 w(i , jk)

is the velocity of triangle pipj`pj`+1
around pipjmpj1 . Because after m

edges we return back to the triangle pipmp1 which does not turn relative
to itself, for each i ,

0 =
m∑

k=1

w(i , jk) =
∑

j :(i ,j)∈E

α′
ij(0)

pi (0)− pj(0)

|pi (0)− pj(0)|
.

Setting ωij =
α′

ij(0)

|pi (0)− pj(0)|
we see that (1) and (2) holds for any

infinitesimal deformation.

Under rigid motion, no face moves relative to its neighbor so ωij = 0.



22. Infinitesimal Rigidity is Equaivalent to ω-Rigidity.

Since ωij = ωji , we consider it as a function on the set of edges. Denote
the map M : R3V−6 → R3V by

M(ω) =

· · · ,
∑

j :(i ,j)∈E

ωij(pi − pj), · · ·

 .

Lemma 2.

L : R3V → R3V−6 and M : R3V−6 → R3V are dual:

z •M(ω) = L(z) • ω

for all z ∈ R3V and all ω ∈ R3V−6.



23. Proof of Lemma.

Proof of Lemma.

L(z) • ω =
∑
i<j

(pi − pj) • (zi − zj) ωij

=
∑
i<j

(pi − pj) • zi ωij −
∑
i<j

(pi − pj) • zj ωij

Interchanging i and j in the second sum

=
∑
i ,j

(pi − pj) • zi ωij

=
∑

i

zi •

∑
j

ωij(pi − pj)


= z •M(ω).



24. Proof of Equivalence.

Theorem 3.

P is infinitesimally rigid if and only if P is ω-rigid.

Proof of Theorem.

We assume that P does not degenerate to a subset of a line. Then

P is infinitesimally rigid. ⇐⇒ dim(ker(L)) = 6

⇐⇒ L is onto.

⇐⇒ ker(M) = {0}
⇐⇒ P is ω-rigid.



25. Infinitesimal Rigidity Implies Rigidity.

Theorem 4.

If P is infinitesimally rigid then it is rigid.

Proof.

We assume that P is infinitesimally rigid so it does not degenerate to a
subset of a line. Consider smooth f : R3V → R3V−6 for i < j , (i , j) ∈ E

f (p) = (· · · , (pi − pj) • (pi − pj), · · · )

Its differential

dfp(h1, . . . , hV ) = (· · · , 2(pi − pj) • (hi − hj), · · · ) = 2L(h)

has 6-dimensinal kernel so dfp is onto. Thus p is a regular value and by
the Implicit Function Theorem, near p the solution f (q) = f (p) is a six
dimensional surface, and so must coincide with six dimensions of
conjugates of p. In other words, a deformation of p near p through
isometries is a rigid motion applied to p.



26. Infinitesimal Rigidity Theorem.

A polyhedron P is strictly convex if at each vertex there is a supporting
plane that touches P at that vertex but at no other point.

Theorem 5. (Cauchy, Dehn, Weyl, Alexandrov)

Assume that P strictly convex polyhedron with triangular faces that does
not degenerate to a subset of a line. Then P is infinitesimally rigid.

Cauchy proved in 1813 that a convex polyhedron whose whose faces are
rigid must be rigid. He made an error that was corrected by Steinitz in
1916. Max Dehn gave the first proof of infinitesimal rigidity of convex
polyhedra in 1916. Weyl gave another in 1917. The current proof is a
simplification of Alexandrov, explained in his magnificent 1949 opus,
Convex Polyhedra. We follow Gluck, 1974.



27. Cauchy’s Lemma.

Lemma 6. (Cauchy)

Let L be a finite graph on the two-sphere S2 with no circular edges and
no region of S2 − L bounded by just two edges of L. Mark the edges of L
randomly with + or −, and let Nν be the number of sign changes as one
circles around the vertex ν. Let N =

∑
ν Nν be the total number of sign

changes. Let V be the number of vertices of L. Then N ≤ 4V − 8.

N and V for Octohedron and Longitudes



28. Proof of Cauchy’s Lemma.

Proof.

Let G be a region of S2 − L and NG the number of sign changes around
G . Then also

N =
∑
G

NG .

Let Fn denote the number of regions with n boundary edges, where an
edge is counted twice if G lies on both sides. Note NG is an even number
≤ n. By assumption F1 = F2 = 0. Hence

N =
∑
G

NG ≤ 2F3 + 4F4 + 4F5 + 6F6 + 6F7 + · · ·



29. Proof of Cauchy’s Lemma.

Let V , E , F and C denote the number of vertices, edges, regions and
components of L. Then

V − E + F = 1 + C ≥ 2

2E =
∑

n nFn

F =
∑

n Fn

Hence

4V − 8 ≥ 4E − 4F

=
∑

n(2n − 4)Fn

= 2F3 + 4F4 + 6F5 + 8F6 + 10F7 + · · ·
≥ 2F3 + 4F4 + 4F5 + 6F6 + 6F7 + · · ·
≥ N.



30. Lemma for Infinitesimal Rigidity Theorem.

Lemma 7. (Alexandrov)

Let p0 be a strictly convex vertex of P and p1, . . . , pm be the vertices
taken in sequence around p0 that are joined to p0 by an edge. Let
ω1, . . . , ωm be numbers such that

0 =
m∑

j=1

ωj(p0 − pj). (3)

Then either ωj = 0 for all j or the sign of ωj changes at least four times
going around p0, ignoring any zeros.



31. Proof of Alexandrov’s Lemma.

Proof.

Let I0 be the number of sign changes around p0. It is even and ≥ 0. We
show first that if I0 = 0 then all ωj = 0 and second that I0 6= 2.

If I0 = 0 then all vectors pj − p0 lie in the same open half space at p0 by
the strict convexity of P at p0. But then (3) with all ωj of the same sign
implies all ωj = 0.

If I0 = 2, then the vertices can be shifted so that in circling p0 we have
ω1, . . . , ωk ≥ 0 and ωk+1, . . . , ωm ≤ 0. By strict convexity, there is a
plane through p0 separating p1, . . . , pk from pk+1, . . . , pm. Therefore the
vectors ωj(pj − p0) which are nonzero all lie in the same corresponding
half space. But then (3) implies all ωj = 0, so I0 = 0 contrary to the
assumption.



32. Proof of the Infinitesimal Rigidity Theorem.

Proof.

We show that P is ω-rigid. Let ω be a bending of P. Mark each edge
(i , j) ∈ E with + if ωij > 0 and with − if ωij < 0. Let L be the subgraph
consisting of the marked edges where ωij is nonzero.

Assuming L 6= ∅, by Alexandrov’s Lemma, there are at least four sign
changes around every vertex of L. Thus the total number of sign changes
around L is at least 4V (L). By Cauchy’s Lemma, the total number of
sign changes around L satisfies N ≤ 4V (L)− 8 which is a contradiction.

It follows that L = ∅ and so all ωij = 0. Thus P is infinitesimally
rigid.



33. Convex Polyhedra are Rigid.

Corollary 8. (Cauchy)

Assume that P strictly convex polyhedron with triangular faces that does
not degenerate to a subset of a line. Then P is rigid.

Proof.

P is infinitesimally rigid by the Infinitesimal Rigidity Theorem. But
infinitesimal rigidity implies rigidity by Theorem 4..



34. Sharper Rigidity Theorems.

The rigidity theorem required that P be convex at each vertex. But the
triangulation may include vertices on the natural edges of P or interior to
a natural face. A natural face of a convex two dimensional surface is the
two dimensional intersection of a supporting plane with the surface. A
natural edge is a one dimensional intersection. Alexandrov proved rigidity
for triangulations whose vertices may be on the natural edge. This was
generalized to allow vertices on the natural faces as well.

Theorem 9. (Connelly, 1978)

A triangulated convex polyhedral surface is second order infinitesimally
rigid, hence rigid.

We have seen that such surfaces (e.g. the square pyramid, Fig. 5.) may
not be (first order) infinitesimally rigid.



Thanks!




