
CUBIC SURFACES WITH SPECIAL PERIODS

JAMES CARLSON AND DOMINGO TOLEDO

Abstract. We show that the vector of period ratios of a cubic surface
is rational over Q(ω), where ω = exp(2πi/3) if and only if the associate
abelian variety is isogeneous to a product of Fermat elliptic curves. We also
show how to construct cubic surfaces from a suitable totally real quintic
number field K0. The ring of rational endomorphisms of the associated
abelian variety is K = K0(ω).
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1. Introduction

Consider an elliptic curve E with equation

(1) y2 = 4x3 − g2x− g3.

The endomorphism ring of such a curve always contains the integer dilations
z 7→ nz. An elliptic curve with larger endomorphism ring is said to have
complex multiplication. The additional endomorphisms are of the form z 7→
λz, and it is easy to see that λ lies in a purely imaginary quadratic extension
K = Q(

√
−d) of the rational numbers. This number field can be identified

with End(E) ⊗ Q and is called the CM field of E. Conversely, if K is a
purely imaginary extension of the rational numbers, an elliptic curve with
CM field K can be constructed as C/OK , where OK is the ring of integers
in K.
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Now fix a symplectic homology basis {γ1, γ2}, and let

ωi =

∫
γi

dx

y

be the fundamental periods. If we write (1) as

y2 = 4(x− e1)(x− e2)(x− e3),

then fundamental periods are the elliptic integrals

ωi =

∫ ∞
ei

dx√
(x− e1)(x− e2)(x− e3)

.

A theorem of Siegel (1932) tells us that if the coefficients gi are algebraic
numbers, then at least one of the periods is transcendental, and in 1934,
Schneider showed that the nonzero periods are always transcendental. For
a specific example, consider the Fermat elliptic curve, with affine equation
y3 = x3 − 1 A fundamental period is given by

π1 =

∫ ∞
1

dx√
x3 − 1

=
1

3
B(1/6, 1/2) =

Γ(1/3)3

24/3π
.

See [6, equation (10)].

When E has complex multiplication, the period ratio

τ = ω2/ω1.

lies in the CM field. In this case, the transcendence degree of the field the
periods, Q(ω1, ω2), is one. It is conjectured that in the non-CM case, the
field generated by the periods is of transcendence degree two.

Consider next a cubic surface X. Because Hodge structure on H2(X) is
entirely of type (1, 1), there are no periods of interest. However, there is an
auxiliary Hodge structure of weight three associated to X which does have
interesting periods and which behaves in many ways like the Hodge structure
of an elliptic curve. This is the Hodge structure of a three-sheeted cover Y
of projective 3-apace branched along X. The period domain for such Hodge
structure is the unit ball in complex four-space. There is a natural period
map

(2) Ms −→ B4/Γ

from the moduli space of stable cubic surfaces (those with at worst nodal
singularities) to the indicated quotient of the ball by an arithmetic group.
It is an isomorphism [1]. The aim of this paper is to explore the relation be-
tween cubic surfaces and their periods. The theory of elliptic curves serves
as a model of what might be possible to establish, at least in part. In
particular, we will investigate the rationality of period ratios. While the re-
sults presented in this direction are modest, they point to several interesting
questions. We discuss them at the end of this paper.
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We are indebted to Madhav Nori, who explained to us how to use the
different to check whether the Abelian variety defined by a number field is
principally polarized.

2. Statement of results

Let σ be one of the two automorphisms of Y over P3. According to the
main result of [1], the pair (H3(Y ), σ), which we shall call an Eisenstein
Hodge structure, determines X up to isomorphism.

Let us elaborate on the previous statement. Since H3,0(Y ) = 0, the Hodge
structure has the form H2,1 ⊕H1,2. Therefore the intermediate Jacobian of
Y is an abelian variety endowed with the automorphism σ. The dimension
of H2,1 is five. Principally polarized Hodge structures of level one of this
“genus” are parametrized by the Siegel upper half space H5 modulo the
action of the group of ten by ten integer matrices which preserve the standard
symplectic form. This space has dimension fifteen.

The subspace of isomorphism classes of Eisenstein Hodge structures has
dimension four and is parametrized by a quotient B4/Γ. of the unit ball in
complex four-space by an arithmetic group. The group Γ is easy to describe.
Let h = −|Z0|2 + |Z1|2 + · · · + |Z4|2 be the standard hermitian form of
signature (4, 1) on C5. Fix a primitive cube root of unity ω = exp 2π

√
−1/3.

Then Γ is the group of h-unitary matrices with coefficients in the ring of
Eisenstein integers, Z[ω]. The space B4/Γ, whiich is geodesically imbedded
in a quotient of H5 is a Shimura variety.

To state the main result of this paper, we recall how the map (2) is
determined by a vector in C5, the period vector of Y . To begin, note that
the endomorphism σ makes H3(Y,Z) into a free rank five module for the
ring of Eisenstein integers. This module carries a natural hermitian of form
of signature (4, 1) and determinant one given by

2h(x, y) =
〈
(σ − σ−1)x, y

〉
− (ω − ω−1) 〈x, y〉 ,

Let γ = {γ0, . . . , γ4} be a basis for H3(Y,Z) as a Z[ω]-module for which
the hermitian form is diagonal with diagonal entries (−1,+1,+1,+1,+1).
The symmetry σ is an automorphism of Hodge structures with eigenvalues
ω = 2π

√
−1 and ω̄. Let H3

ω⊕H3
ω̄ be the eigenspace decomposition. Because

it is compatible with the Hodge decomposition, one has the complex Hodge
structure

H2,1
ω̄ ⊕H

1,2
ω̄ .

The summands have dimensions one and four, and σ can be chosen so the
first summand has dimension one. Let Φ be a nonzero element of H2,1

ω̄ .
Then the period vector of H3(Y ) is

(3) v =

(∫
γ0

Φ, . . . ,

∫
γ4

Φ

)
.
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Let f(x, y, z) = 0 be an affine equation for the cubic surface, in one of the
standard affine open sets of P3. Then w3 = f(x, y, z) is an affine equation

for the cubic threefold. As noted in [1], a natural generator for H2,1
ω̄ (Y ) is

given by the form

Φ =
dx ∧ dy ∧ dz

w4
.

This is the analogue of the abelian differential dx/y for an elliptic curve. If f
has coefficients in a field K, then so does Φ — it is a K-rational differential.
Consequently Φ is well-defined up to a nonzero element of K. Therefore
questions about the rationality of periods, referred to such a K-rational
differential, make sense for any field L extending K.

There is a philosophy that periods of K-rational differentials are almost
always transcendental; this is, however, difficult to prove in any concrete
intance. Thus our focus will therefore be on period ratios such as ω2/ω1 for
cubic curves or

vi =

∫
γi

Φ∫
γ0

Φ

for cubic surfaces. In the last ratio, we may rescale Φ so that v0 = 1. The
resulting periods vi, which are now relative to a differential with unknown
rationality properties, should be thought of as period ratios. This will be
our point of view in what follows.

Let us write the period vector as v = (a, b1, b2, b3, b4) = (a, b). When
a = 1, we say that the period vector is normalized. In this case b is a
vector in C4 of length at most 1. The corresponding Hodge structure of
level one and genus five is determined by a 5 × 10 matrix of periods P =
(A,B). It is normalized in the case that A is the identity (in which case B
is symmetric with positive-definite imaginary part). In section 3 we show
that in the presence of the action by σ, the period vector and the period
matrix determine each other, up to natural equivalences.

Finally, recall that an abelian variety over C is said to be of CM-type if
it is isogeneous to a product A1 × · · · × Ar of simple abelian varieties and
there are fields Ki ⊂ End(Ai) ⊗ Q such that [Ki : Q] ≥ 2 dimAi (in which
case [Ki : Q] = 2 dimAi and Ki = End(Ai)⊗Q. If the fields Ki are equal,
we say that K = Ki is the CM field of the abelian variety. See Mumford [4,
p. 347]. We can now state our first result.

Theorem 1. Let X be a cubic surface and let J be its abelian variety. The
following are equivalent: (a) one (and hence all) normalized period vectors
of X have coefficients in Q(ω); (b) one (and hence all) normalized period
matrices of X have coefficients in Q(ω), (c) J is isogeneous to a product of
Fermat elliptic curves.

It follows from the theorem that for a cubic surface with period vector in
Q(ω), End(J)⊗ZQ is the ring of 5×5 matrices with coefficients in Q(ω); as
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a consequence of the main theorem, we see that cubic surfaces with period
vector in Q(ω) are of CM-type with CM field Q(ω),

Corollary 1. The Hodge structures of CM type in CH4 are dense.

Because the period map (2) is surjective, there is a dense set of smooth
cubic surfaces with periods in Q(ω). As noted in [1, Theorem 11.6, 11.9],
some explicit surfaces with periods of this kind are known. The period
vector of the Fermat cubic surface x3 + y3 + z3 + w3 = 0 is

v = (2− ω̄, 1, 1, 1, 1).

and that of the diagonal cubic surface x3 + y3 + z3 + w3 + u3 = 0, x + y +
x+ w + u = 0 is

v = (3, 1, 1, 1, 1)

As remarked above, these normalized periods, which are relative to unknown
rationality propoerties, should be thought of as period ratios.

It is natural to ask how to characterize cubic surfaces with periods in Q(ω)
in purely geometric terms. We do not know the answer, even conjecturally.
The last result concerns cubic surfaces whose CM algebra is a field:

Theorem 2. There exist simple, principally polarized abelian varieties A
of dimension five with three-fold symmetry σ. The ring End(A) ⊗ Q is
isomorphic to a CM-field K of the form K0(ω), where K0 is a totally real
field of degree five. The Hodge structure of A is rational over K, and it is
defined by a period vector rational over the same field.

3. Cubic surfaces with period vector rational over Q(ω)

The key to the proof of the first theorem is an analysis of the periods of
the most singular stable cubic surface. We begin with the following:

Proposition 1. Any normalized period vector of the Cayley cubic surface,

1

x
+

1

y
+

1

z
+

1

w
= 0.

is Γ-equivalent to v = (1, 0, 0, 0, 0).

The Cayley cubic surface is the cubic surface with the maximum number
(four) of nodes. Any two such surfaces are isomorphic over the complex
numbers. As we show in a moment, the period vector determines the period
matrix:

Corollary 2. The normalized period matrix of the Cayley cubic surface is
Γ-equivalent to

(4) P = (I, ωI) .
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where I is the identity matrix.Thus the intermediate Jacobian of the Cay-
ley cubic surface is the product of five Fermat elliptic curves.

As a general principle, the period vector in our context determines the period
matrix and conversely:

Lemma 1. The Eisenstein Hodge structure (H,σ) is determined by the
complex Hodge structure on Hω̄, and vice versa.

Proof. The orthogonal complement of the period vector v with respect to
the hermitian form of H1,2

ω̄ is v⊥ = H1,2
ω̄ . Then

H2,1 = Cv ⊕ v⊥,
where the complex conjugation is defined on HC, fixing the points of HR.
Thus the period vector of the complex Hodge structure Hω determines the
Eisenstein Hodge structure (H,ω). The converse is clear. �

Let us now compute the period matrix P of a general cyclic cubic surface.
To this end, recall that γ = {γ0, · · · , γ4} is a unitary basis of H3(Y,Z) as a
hermitian Eisenstein module. Let γ′ = {γ′0, · · · , γ′4} = {σ−1γ0, σγ1, · · · , σγ4}.
The the homology basis γ ∪ γ′ is a sympletic basis with respect to the stan-
dard form

J =

(
0 I
−I 0

)
where I is the identity matrix. Choose a basis {Φ0, . . . ,Φ4} for H2,1 where

Φ0 ∈ H2,1
ω̄ and Φi ∈ H2,1

ω for i > 0. Then the period matrix takes the form

P = (A,B)

where

Aij =

∫
γj

Φi Bij =

∫
γ′j

Φi

The change of variable formula in the calculus coupled with the fact that
the Φi are eigenvectors of σ imply that

(5)

∫
γ′j

Φi = λ

∫
γj

Φi,

where λ ∈ {ω, ω̄}. We may choose the basis {Φ1, . . . ,Φ4} so that Aij = δij
for i, j ∈ {1, . . . , 4}. The first Riemann bilinear relation determines the first
column of A in terms of the second, while (5) determines B in terms of A.
We conclude that

(6) P =


1 b1 b2 b3 b4 ω ω̄b1 ω̄b2 ω̄b3 ω̄b4
b1 1 0 0 0 ω̄b1 ω 0 0 0
b2 0 1 0 0 ω̄b2 0 ω 0 0
b3 0 0 1 0 ω̄b3 0 0 ω 0
b4 0 0 0 1 ω̄b4 0 0 0 ω
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In the case of the Cayley cubic surface, the parameter vector b is zero and
the period matrix is

P = (I, ωI) ,

where I is the identity matrix. It follows that the abelian variety of the
Cayley cubic surface is the product of five Fermat elliptic curves.

The map ψ(b) = Z, where Z = BA−1 is a matrix period quotients, gives
an imbedding of the unit ball in the Siegel upper half space of genus five. It
can be written more concisely as

P (b) =

(
1 b ω ω̄b
tb I ω̄ tb ωI

)
To understand better the location of Z(b) in the Siegel upper half space,
note the quantity δ = detA = 1 − b · b is nonzero since |b|2 < 1. Thus, if
P = (A,B) is the period matrix, we can form A−1(A,B) = (1, Z), where
Z is the normalized matrix of B-periods, a symmetric matrix with positive
definite imaginary part. The inverse of A is given by the following quadratic
expression:

A−1 = δ−1


1 −b1 −b2 −b3 −b4
−b1 δ1 b1b2 b1b3 b1b4
−b2 b1b2 δ2 b2b3 b2b4
−b3 b1b3 b2b3 δ3 b3b4
−b4 b1b4 b2b4 b3b4 δ4

 ,
where δ = 1−(b21+b22+b23+b24) is the determinant of A and where δi = δ+b2i .
Then

(7) Z = A−1B = δ−1


δ′0 −θb1 −θb2 −θb3 −θb4
−θb1 δ′1 θb1b2 θb1b3 θb1b4
−θb2 θb1b2 δ′2 θb2b3 θb2b4
−θb3 θb1b3 θb2b3 δ′3 θb3b4
−θb4 θb1b4 θb2b4 θb3b4 δ′4

 ,
where θ = ω − ω−1 =

√
−3,

δ′0 = ω − ω̄(b21 + b22 + b23 + b24),

and

δ′i = ωδ − θb2i .
The matrix Z can be rewritten as

(8) Z(b) = ωI + (θ/δ)

(
b · b −b
− tb b⊗ b

)
,

where b is viewed as a row vector, tb is the corresponding column vector, and
b⊗ b is the matrix whose ij-th entry is bibj . Thus the quadratic function

ψ(b1, · · · , b4) = Z(b)
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maps points of the unit ball to points of the Siegel upper half space, with
the origin of the ball mapped to the normalized period matrix of product of
five Fermat elliptic curves.

Proof of Theorem 1.

The proof consists of the following three steps. (1) The isogeny class
of an abelian variety with lattice Λ ⊂ Cn is the isomorphism class of the
embedding Λ⊗Q ⊂ Cn (isomorphism by complex linear maps of Cn). (2) If
Λ0 is the lattice of E5, where E is the Fermat elliptic curve, then Λ0 ⊗Q =
Q(ω)5 ⊂ C5. (3) If the period vector a is in Q(ω), then formula (6) for the
period matrix shows the columns of the matrix, which give a basis for the
lattice Λ, namely, have entries in Q(ω). Thus Λ⊗Q is isomorphic to Λ0⊗Q
as rational subspaces of C5.

4. Smooth cubic surfaces and quintic number fields

As we have just seen, one can distinguish certain points in the ball quo-
tient, e.g., those whose period vector is rational over Q(ω). In that case the
Abelian variety is isogeneous to a product of Fermat elliptic curves.

We now seek special points in the ball quotient where the corresponding
abelian variety is simple and where the rational endomorphism ring is a
number field. To this end, consider first a totally real number field K0 of
degree n, and let K = K0(µ). The field K has n distinct embeddings τi in
the complex numbers. A CM type for K is a choice Φ = (τ1, . . . , τn), where
τi 6= τ̄j for any i, j. Let OK be the ring of integers in K. Then one can form
the complex torus A(K,Φ) = Cn/Φ(OK). Note that the ring OK acts by
endomorphisms on A(K,Φ), so that

(9) K ⊂ End(A(K,Φ))⊗Q.

If A(K,Φ) is simple, then the rational endomorphism ring is a division
algebra of dimension at most 2n over Q. But dimQK = 2n, so

K = End(A(K,Φ))⊗Q.

Thus the rational endomorphism ring of such a torus is the field K.

To polarize the torus A(K,Φ), we follow an argument of Mumford, [3,
page 212]. There he claims

(∗) the existence of an element α of K such that τi(α) =√
−1βi, where the βi are positive reals.

Given such an element, the expression

(10) H(x, y) = 2

g∑
i=1

βiτi(x)τi(y).
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defines is a positive Hermitian form. Its associated skew form is

(11) Ω(x, y) = =H(x, y) = −2<
g∑
i=1

τi(α)τi(x)τi(y) = −TrK/Q(αxȳ).

Since α is an element of the field K, the trace form takes rational values.
To ensure that the values of the form are integers, we choose α to be in O∨K ,
the lattice dual to OK .

To show the existence of the element α in (∗), Mumford argues as follows.

Let δ be an element of K0 such that K = K0(
√
δ). Since K is a totally

imaginary extension of the totally real field K0, for each i we can write
τi(
√
δ) =

√
−1γi, where γi is a nonzero real number. One can also find an

element η ∈ K0 such that τi(η) and γi have the same sign for all i. Then

α = η
√
δ is such that τi(α) =

√
−1βi, where βi is a positive real number for

all i. To summarize, we have the following:

Proposition 2. Given an element α ∈ O∨K satisfying (∗), the expression
(10) defines a polarization of A(K,Φ).

There remains the question of whether this polarization, which is deter-
mined by a suitable element α ∈ OK , can be chosen to be principal. To
his end, let O∨K be the lattice dual to OK with respect to the trace pairing,
and suppose that αOK ⊂ O∨K . Then Ω(x, y) takes values in Z, the ring of
rational integers. If in addition

(12) αOK = O∨K ,
then the form Ω(x, y) is unimodular. In exactly this case the abelian variety
A(K,Φ) is principally polarized. The condition αOK = O∨K holds whenever
α−1 generates the different of K, that is, the fractional ideal (O∨K)−1. (Thus
in the cases we consider, the different is a principal ideal.) To conclude, we
have

Proposition 3. The polarization defined by α ∈ O∨K is principal if α−1

generates the different of K.

In the case that K = K0(θ), θ2 = −3, one can restate the criterion (∗) in
terms of the different of K0. To this end we introduce the following notion.

Definition 1. Let β be an element of a totally real field K0 of degree n over
Q. Let τi, i = 1..n be the imbeddings of K0 in the real numbers. Let ε be an
n-vector with entries ±1. Then β is ε-positive if

εiτi(β) > 0 for all i.

In the case that εi = +1 for all i, ε-positivity the same as total positivity.

Proposition 4. Let Φ be a CM-type for K which extends the CM-type for
K0 with τi(θ) = εiθ, εi = ±1. Let β be an ε-positive element of K0 whose



10 JAMES CARLSON AND DOMINGO TOLEDO

inverse generates the different of K0. Then α = −βθ−1 defines a principal
polarization of A(K,Φ).

Proof. The element α = −βθ−1 is the product of inverses of generators of
the different for K0 and Q(ω). By the multiplicativity of the different, this
product is an inverse of a generator of the different of K, that is, a generator
of O∨K . See [5, Prop. 2.2, p. 195]. Now

τi(α) = −τi(β)τi(θ
−1) =

√
−1
(
εiτi(β)/

√
3
)
.

The quantity in parenthesis be positive if εiτi(β) is positive, as asserted. �

There remains the question of whether the conditions of ε-positivity for
a generator of the different of K0 can ever be satisfied. The next result
sets forth a criterion for its satisfaction which can sometimes be verified by
computation. We will carry out such a computation in the next section.

Proposition 5. Let Φ and β be as in the preceding proposition. Suppose
that there is a unit η of OK0 such that τi(η) has the same sign as εiτi(β).
Then the element βη is ε-positive.

Proof. If the vectors (τ1(η), . . . , τn(η)) and (εiτ1(β), . . . , εnτn(β)), lie in the
same octant then the conditions of the previous proposition are satisfied. �

Let us return to the case of K = K0(θ), where K0 is a totally real quin-
tic field, and consider the problem of whether there are choices so that
A(K,Φ, α) is a principally polarized abelian variety which has an automor-
phism of order three, and such that the eigenvalues of that automorphism
on the space of abelian differentials are ω with multiplicity four and ω̄ with
multiplicity one.

To this end, let τ1, . . . , τ5 be the imbeddings of K0 in R. Extend them to
imbeddings of K in C by requiring

(13) τ1(ω) = ω̄ and τi(ω) = ω for i > 1.

Then (τ1, . . . , , τ5) is a CM type for K with the property that Φ(ω) acts on
C5 with eigenvalues (ω̄, ω, ω, ω, ω). It follows that

dimH1,0
ω̄ (A(K,Φ)) = 1.

Now let us construct a field with required properties. Let ζ = exp(2π
√
−1/p)

be a primitive p-th root of unity. The totally real subfield of Q(ζ) is
K0 = Q(ρ), where

ρ = ζ + ζ−1 = 2 cos(2π/11) = 1.6825...

It is the totally really quintic field of smallest discriminant, namely 114 =
14641. It is not hard to see that Q(ζ) is a CM field and that one can
construct a simple Abelian variety from it. See [2, p. 24]). What we need,
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however, is a simple abelian variety with a suitable action of ω. To this end,
we establish the following:

Proposition 6. Let K = K0(ω). Let Φ be the CM type extended from a
CM type (τ1, . . . τ5) of K0 as in equation (13). Then A(K,Φ) is a simple,
principally polarized abelian variety. It therefore corresponds to a smooth
cubic surface.

Proof. The class number of K0 is one, so that all ideals in OK0 are principal.
The different of OK0 is the ideal generated by

δ0 = −4r4 + r3 + 14r2 + 4r − 9,

where r = −ρ generates K0. This element is not totally positive. The group
of units of OK0 is isomorphic to C2 × Z4. Generators for the free abelian
part of this group are

u1, u2, u3, u4 = r4 − 3r2 + 1, r2 − r − 1, r − 1, r

One finds that element

δ = rδ0,

which also generates the different ideal, is ε-positive for ε = (+,+,−,+,+).
The element β = δ−1 is also ε-positive, and it is the element we use to define
the principal polarization. The embeddings of δ in R are

21.7307463515808

4.26952134163076

-1.91569396353523

14.0542888631537

5.86113740717001

The corresponding embeddings of the generator r of K over Q are

-1.68250706566236

-0.830830026003773

0.284629676546570

1.30972146789057

1.91898594722899

The criterion for ε-positivity is satisfied, and the abelian variety A(K,Φ, α)
is principally polarized.

To conclude that A(K,Φ, α) corresponds to a smooth cubic surface, we
must show that it is irreducible. It will be enough to show that it is simple.
To that end, consider the Galois group G of K/Q. It is a group of order ten.
The subgroup Gal(K0/Q) is normal. Since it is of order five, it is cyclic.
The subgroup Gal(Q(ω)/Q) is also normal, and since it is of order two, it is
cyclic. A group of order ten with these structural features must be cyclic.
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The subfields of K are the fixed sets of subroups of the Galois group.
Since a cyclic group of order ten has only two non-trivial subgroups, the
field K has only two nontrivial subfields, namely, K0 and Q(ω). Once we
know the subfields of K, Mumford’s criterion for simplicity of A(K,Φ, α) [3,
p. 213-14] is easy to apply. If suffices to show that there are τi and τj such
that τi|Q(ω) 6= τj |Q(ω). The condition on the τ ’s holds by construction.
See equation (13). �

We have a construction

{Certain totally real quintic number fields} −→ {B4/Γ}

The period matrices that arise in this way are rational over K. Indeed,
consider the formula (7) for the normalized period matrix Z = (Zij), where
i and j run from 0 to 4. Then the period vector is

b = (1/θ)(Z01, Z02, Z03, Z04)

If Zij is rational over K then so is b. The converse alsn comes from formula
(7). The period vector could be rational over K0 and still correspond to a
period matrix rational over K; it cannot, however, be rational over Q or
Q(ω).

5. Computations and experiments

Above we described a method to show that the totally real quintic field
of discriminant 14641 defines a principally polarized abelian variety with
three-fold symmetry of the correct type. The same method can be used
to produce lists of quintic fields with this property. Using the Sage code
below, for example, we show that (1) there are 414 totally real quintic fields
of discriminant less than 106; (2) none of these have class number bigger
than 1; (3) there are are at least 370 fields which satisfy the hypotheses of
Proposition 4 (4) that is, the density of such fields in the indicated range is
about 0.89. Below is the data for the fields of disciminant < 105. The second
column is the discriminant of the field. The number in the last column is 1
if the field passes the test, 0 if it fails.

discr result

1 14641 1

2 24217 1

3 36497 1

4 38569 0

5 65657 1

6 70601 1

7 81509 1

8 81589 1

9 89417 1
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Sage code. We first define a function to return the class number of the
field K0 = Q[X]/(F [X]):

def classNumber(F):

R.<x> = PolynomialRing(QQ)

f = R(F)

K.<a> = NumberField(f)

return K.class_number()

Next, we define the function test(F, MAX). If it returns 1, then K0 passes
the test of having ε-positive generator of the different for some ε with a
single −1. In paragraph one of the code, a generator d0 of the different
and generators u[0], ..., u[3] for the free part of the group of units are
found for K0.

In the second paragraph, a search is conducted over a small box in the
positive octant of i, j, k, ` space. At each lattice point we ask whether

d0u
i
0u
j
1u
k
2u

`
3 is ε-positive. If a lattice point passes the test, the function

test returns 1. If no lattice point passes the test, the function returns 0.

def test(F, MAX):

R.<x> = PolynomialRing(QQ);

f = R(F)

K0.<a> = NumberField(f);

D0 = K0.different(); d0 = D0.gens_reduced()[0]

u = K0.units()

i, j, k, l = 0, 0, 0, 0

for i in range(0,MAX):

for j in range(0,MAX):

for k in range(0,MAX):

for l in range(0,MAX):

dd = d0*u[0]^i*u[1]^j*u[2]^k*u[3]^l

if epsilon_positive(dd) == True:

return 1

return 0

The test for ε-positivity is carried out by the function below:

def epsilon_positive(x):

ee = x.complex_embeddings()

delta = 0.0000001

neg = 0; pos = 0

for e in ee:

if e < -delta:

neg = neg + 1

if e > delta:
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pos = pos + 1

if neg == 1 and pos == 4:

return True

else:

return False

Finally, we enumerate the totally real quintic fields of discriminant less than
N, applying the above test to each, and collecting various statistics.

def testFields(N, BOX):

TRF = enumerate_totallyreal_fields_all(5, N)

n = 1; nNonUFD = 0; nPass = 0

for field in TRF:

discr, G = field

cn = classNumber(G)

if (cn == 1):

result = test(G, BOX)

if (result == 1):

nPass = nPass + 1

else:

result = -1

nNonUFD = nNonUFD + 1

print "%5d %4d %2d" % (n, discr, result)

n = n + 1

print "Summary:"

print " Number of fields:", len(TRF)

print " Number of fields of class number > 1:", nNonUFD

print " Number of fields which satisfy the criterion:", nPass

To run the test on fields of discriminant < 106 with a box of lattice points
that measures five units on a side, run the command testFields(10^6,

5).
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