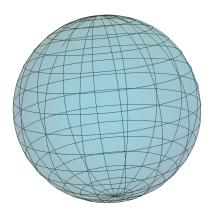
- (1) (2 pts) Geodesic curvature of parallels in S^2 : As usual S^2 is the unit sphere in \mathbb{R}^3 . It can be parametrized by spherical coordinates ϕ, θ , where $0 \le \phi \le \pi$ is co-latitude and $0 < \theta < 2\pi$ is longitude:
- $(x, y, z) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)$ (1)

The parallels are the curves $\phi = c, 0 \le c \le \pi$ a constant. The curves $\phi = 0, \pi$ degenerate



to the north and south pole respectively, and $\phi = \pi/2$ is the equator. Compute the geodesic curvature $\left|\frac{D\gamma'}{Ds}\right| = |\gamma''^T|$ of the parallel $\gamma = \gamma_{\phi}$ for each value of ϕ Suggestion:

- (a) For fixed ϕ , (??) gives a curve with parameter θ , which is not arc-length unless $\phi = \pi/2$, the equator. Re-parametrize this curve by arc-length s, get a curve $\gamma(s)$ (depending on ϕ)
- (b) Figure our the tangential component γ''^T and find its magnitude (answer: $\cot \phi$)
- (2) (4 pts) Gaussian curvature of the sphere of radius R: Let $S^2(R)$ denote the sphere in \mathbb{R}^3 of radius R and let $\mathbf{x}(\phi, \theta)$ be the parametrization of $S^2(R)$ obtained by multiplying (??) by R. Thus $\mathbf{x}: [0,\pi] \times [0,2\pi] \to S^2(R)$ is surjective but maps $0 \times [0,2\pi]$ to the north pole, etc.
 - (a) Not to forget topology, prove that x is an identification.
 - (b) Write the expression for $ds^2 = d\mathbf{x} \cdot d\mathbf{x}$ for this parametrization.
 - (c) Let r be distance from the north pole. Express ϕ as a function of r and change the expression for ds^2 to one that is a function of r and θ . It should be of the form 1

 $dr^2 + g(r)^2 d\theta^2$ for a suitable function g(r). Observe that the circumference of a circle centered at the north pole of radius r is $\int_0^{2\pi} g(r)d\theta = 2\pi g(r)$. (d) Show that the Taylor expansion of g at r = 0 begins

$$g(r) = r - \frac{r^3}{6R^2} + \dots$$

The quantity $1/R^2$ is called the "Gaussian curvature" of $S^2(R)$. It measures the deviation of the circumference of circles of radius r from the value $2\pi r$ in Euclidean geometry.

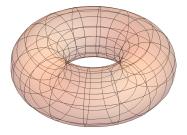
(3) (4 pts) Gaussian curvature of a cylinder: Let C be the cylinder $\{x^2 + y^2 = 1\} \subset \mathbb{R}^3$. "Parametrize" C by the map $\mathbf{x}: \mathbb{R}^2 \to C$ defined by

$$\mathbf{x}(u,v) = (\cos u, \sin u, v).$$

- (a) Even though \mathbf{x} is not injective, show that \mathbf{x} is locally injective, is an open map, and is an identification. So it can be used to compute $ds^2 = d\mathbf{x} \cdot d\mathbf{x}$.
- (b) Find $ds^2 = d\mathbf{x} \cdot d\mathbf{x}$. Any surprises?
- (c) Find the circumference of the geodesic circles of radius r, for small enough r, so that these curves will not intersect themselves. What's the Gaussian curvature?
- (d) Find all geodesics in C joining (1,0,0) to $(1,0,2\pi)$. Show that there are infinitely many distinct ones. Draw a picture.
- (4) Extra credit problems on the torus

Let T be the torus $\mathbb{R}^2/(2\pi\mathbb{Z})^2 = \mathbb{R}^2/\sim$, where $(x,y) \sim (x',y')$ if and only if x - x'and $y - y' \in 2\pi\mathbb{Z}$. Can measure lengths of curves in two ways:

- $ds_1^2 = dx^2 + dy^2$ on \mathbb{R}^2 , is invariant under translations, is well defined on T. $ds_2^2 = d\mathbf{x} \cdot d\mathbf{x}$ where $\mathbf{x}(\phi, \theta) = ((2 + \cos \phi) \cos \theta, (2 + \cos \phi) \sin \theta, \sin \phi)$. Then $\mathbf{x} : \mathbb{R}^2 \to \mathbb{R}^3$ and $\mathbf{x}(\phi + 2\pi m, \theta + 2\pi n) = \mathbf{x}(\phi, \theta)$ for all $m, n \in \mathbb{Z}$, therefore \mathbf{x} gives a map $\mathbf{x}: T \to \mathbb{R}^3$ with image the familiar torus of revolution in $\mathbb{R}^3/$



- (a) For (T, ds_1^2) find the Gaussian curvature and all the geodesics from [(0, 0)] to $[(\frac{1}{2}, \frac{1}{2})]$.
- (b) For (T, ds_2^2) show that all circles $\theta = const$ are geodesics, and decide which of the circles $\phi = const$ are geodesics.
- (c) Prove that there is no isometry between (T, ds_1^2) and (T, ds_2^2) .