- (1) (2pts) Let X be a compact Hausdorff space, let $A, B \subset X$ be disjoint closed sets. Prove that there exist disjoint open sets $U, V \subset X$ with $A \subset U$ and $B \subset V$.
- (2) (4pts) Let (X, d) be a metric space and let $A \subset X$, let $x \in X$. Define the *distance between* x and A, denoted d(x, A), by

$$d(x, A) = \inf\{d(x, y) \mid y \in A\}$$

- (a) Prove that f(x) = d(x, A) is a continuous function of x. Suggestion Prove that f is Lipschitz.
- (b) Prove that d(x, A) = 0 if and only if $x \in \overline{A}$.
- (c) Observe that it follows from (a) and (b) that if $A \subset X$ is closed, there exists a continuous function $f: X \to [0, \infty)$ such that f(x) = 0 if and only if $x \in A$.

Prove that if $A, B \subset X$ are disjoint closed subsets, there exists a function $g: X \to [0,1]$ such that $g(x) = 0 \iff x \in A$ and $g(x) = 1 \iff x \in B$.

Conclude, from knowing that g exists, that if $A, B \subset X$ are disjoint closed sets, there exist disjoint open sets $U, V \subset X$ with $A \subset U$ an $B \subset V$.

Suggestion To find g, use some fraction with numerator and denominator simple expressions in d(x, A) and d(x, B).

- (3) (2 pts) Recall that a topological space is said to be *locally connected* if and only if it has a basis consisting of connected open sets.
 - (a) Prove that if X is locally connected, then its connected components are open.
 - (b) Prove that if X is locally connected and Y is the space of its connected components, with the quotient (= identification) topology, then Y is discrete.
- (4) (2 pts) A topological space X is said to be *totally disconnected* if and only if, for all $x \in X$, the connected component of x is simply $\{x\}$.
 - (a) Prove that, if for all $x, y \in X$ there exists a continuous function $\phi : X \to \{0, 1\}$ (where $\{0, 1\}$ has the discrete topology) such that $\phi(x) \neq \phi(y)$, then X is totally disconnected.
 - (b) Prove that $\{0,1\}^{\mathbb{N}}$, with the product topology, is totally disconnected. (Recall that product topology makes sense since $\{0,1\}^{\mathbb{N}} = \prod_{1}^{\infty} \{0,1\}$)