(1) (3 pts) The purpose of this exercise is to prove the triangle inequality for the great-circle arc distance d on the unit sphere $S^2 = \{x \in \mathbb{R}^3 : |x| = 1\} \subset \mathbb{R}^3$. From elementary geometry, the length of the great circle arc from x to y is

$$d(x,y) = \cos^{-1}(x \cdot y)$$

where $x \cdot y$ is the usual dot product in \mathbb{R}^3 . Thus, the triangle inequality for d is the same as the following inequality:

(2)
$$\cos^{-1}(x \cdot y) \le \cos^{-1}(x \cdot z) + \cos^{-1}(z \cdot y)$$
 for all $x, y, z \in S^2$

(a) Show that (2) is equivalent to

(3)
$$\det \begin{pmatrix} x \cdot x & x \cdot y & x \cdot z \\ y \cdot x & y \cdot y & y \cdot z \\ z \cdot x & z \cdot y & z \cdot z \end{pmatrix} = \det \begin{pmatrix} 1 & x \cdot y & x \cdot z \\ y \cdot x & 1 & y \cdot z \\ z \cdot x & z \cdot y & 1 \end{pmatrix} \ge 0$$

(Note that the two determinants agree in our case, because $x \cdot x = y \cdot y = z \cdot z = 1$, since $x, y, z \in S^2$.)

Suggestion: Apply the decreasing function cos to both sides of (2) to get

$$x \cdot y \ge \cos(\cos^{-1}(x \cdot z) + \cos^{-1}(z \cdot y))$$

Then use the addition fornula for the cosine $\cos(A+B)=\cos A\cos B-\sin A\sin B$ to the right-hand side, then the formula $\sin(\cos^{-1}(X))=\sqrt{1-X^2}$ to get rid of all trigonometric functions. Then get rid of all square roots. Check that the resulting expression you get matches with the second determinant in (3).

- (b) Use the fact from linear algebra that for any three vectors x, y, z in \mathbb{R}^n , $n \geq 3$, the first determinant in (3) is ≥ 0 and = 0 if and only if $\{x, y, z\}$ is linearly dependent. Conclude that the triangle inequality holds for the spherical metric (1). Moreover, equality holds in (2) if and only if x, y, z lie on a great circle.
- (2) (3 pts) Let (\mathbb{R}^2, d_{FR}) be \mathbb{R}^2 with the French railway metric

$$d_{FR}(x,y) = \begin{cases} |x-y| \text{ if } x \text{ and } y \text{ are in same ray from } 0\\ |x| + |y| \text{ otherwise,} \end{cases}$$

Consider the following subspaces of (\mathbb{R}^2, d_{FR}) with the subspace metric d:

- (a) y = 1
- (b) y = x
- (c) $x^2 + y^2 = 1$

In each case the subspace metric is homeomorphic to either $\mathbb R$ or the unit circle S^1 with the discrete metric

$$d_{disc}(x,y) = \begin{cases} 0 & \text{if } x = y\\ 1 & \text{otherwise,} \end{cases}$$

or to \mathbb{R} with the usual euclidean metric $d_E(x,y) = |x-y|$. For each of the three metrics d in (a), (b), (c) answer the following questions:

- (a) Identify to which of the three altenatives d' is it homeomorphic.
- (b) Once you know the alternative d', then answer the questions: is d isometric to d'? Is d bi-Lispschitz to d'?
- (3) (4 pts) Let (X,d) be a metric space, and let $f:[0,\infty)\to [0,\infty)$ be a strictly increasing function with f(0)=0 and subadditive: $f(x+y)\le (x)+f(y)$ for all $x,y\in [0,\infty)$. In a previous homework you proved that if we define d'(x,y)=f(d(x,y)), then (X,d') is also a metric space.
 - (a) Suppose, in addition, that f is continuous. Prove that d and d' give the same topology on X. (This means, $U \subset X$ is open in (X,d) if and only if it is open in (X,d')). Remark: Since f is strictly increasing and continuous, then, by the intermediate value theorem, if follows easily that $f([0,\infty))$ is an interval [0,a) for some $a,0 < a \le \infty$ and $f^{-1}:[0,a) \to [0,\infty)$ exists and is continuous. You may use this in your proof.
 - (b) As in the previous homework, apply this to the function $f(x) = \frac{x}{1+x}$. Conclude that for any metric space (X,d), the metric space $(X,\frac{d}{1+d})$ has the same topology as (X,d).
 - (c) Conclude that the topology of any metric space can be defined by a bounded metric.

Extra Credit Problems:

(1) (5 pts)Prove the triangle inequality for the hyperbolic metric on the upper half $x_3 > 0$ of the hyperboloid $X = \{x_1^2 + x_2^2 - x_3^2 = -1\}$ in Minkowski space

$$d(x,y) = \cosh^{-1}(x \diamond y)$$

where $x,y\in X$ and $x\diamond y$ is the Minkowski inner product. See Lectures, Week 2 and Notes, 1.19 to 1.23 for more details.

(2) (2 pts) Problem (3) shows that (X, d) and $(X, \frac{d}{1+d})$ are homeomorphic. When can they be bi-Lipschitz equivalent? Give necessary and sufficient conditions.