Introduction to Algebraic and Geometric Topology Week 9

Domingo Toledo

University of Utah

Fall 2017

they define same + 0 pology Pard Op; los In A condi YEE X & BEB, StrEB Metric tope do 7 B' & B' SFI ZEB'CB B ((), () 7 /B < / / and the way armus B(Eury), r) = B(xor) × Blong)

JB = JBI teck, sle B's 76 B',
3 BeB 5 h 26 B CB + JBICJB may (d(x0,70), (y0,19)) 2 T allxoner, dlyon)r (Bg) < B(8, +) × B(80, r) (4, 4) = B(+1,0) x(60,0) d(x0/x)2 r & d (30m)2r = mue {d(x6, x1, d(y0, 9) 20 (regre & Cour), B(4,1) No com Erili) = mul, ryn $B(x_0,r)B(y_0,r) \subset B(x_0,r+1) \times B(y_0,r+1) \subset B(x_0,r+1) \times B(y_0,r+1)$

Recall: Connected Spaces

Definition

 $\widehat{\mathsf{A}}$ topological space (X,\mathcal{T}) is connected

if $Y \subset X$ is both open and closed, then either Y = X or $Y = \emptyset$

$$\mathbf{Y} = \emptyset$$

Equivalent Formulations

Theorem

X is connected

bother & & b disconnected

EX= DOV, TIV = 6, open, TH, V+6

Whenever $U, V \subset X$ are open sets with $X = U \cup V$ and $U \cap V = \emptyset$. then either

275-6 a V-4

Theorem

X is connected

 \iff

Whenever $E, F \subset X$ are closed sets with $X = E \cup F$ and $E \cap F = \emptyset$, then either

$$E = \emptyset$$
 or $F = \emptyset$

Theorem

Let $\{0,1\}$ have the discrete topology. Then X is connected

 \iff

Every continuous map $f: X \to \{0,1\}$ is constant.

$$f^{-1}(o), f^{-1}(i) \text{ ohen } | closed$$

$$f^{-1}(o), f^{-1}(i) \text{ ohen } | closed$$

$$f \in \mathcal{F}^{-1}(o) \cup f^{-1}(i) \cap f^{-1}(i) = f$$

$$f \in \mathcal{F}^{-1}(o) \cup f^{-1}(i) \cap f^{-1}(i) = f$$

If $Y \subset X$, Y connected means: connected in the subspace topology.

Theorem

If $f: X \to Y$ is continuous and X is connected, then f(X) is connected.

Theorem

Consog

The unit interval $[0,1] \subset \mathbb{R}$ is connected.

$$\varphi(0) = 0$$

$$\varphi(0) = 0$$

$$\varphi(0) = 0$$

$$\varphi(0) \neq 0$$

$$\varphi(0) \Rightarrow 0$$

any ACR A & for both has into a= inf. 9-(1) QUE 0, Fr, a < x care
se pont

Path-Connected Spaces Definition

A topological space *X* is said to be *path connected*

$$\iff$$

For all $x, y \in X$ there exists a continuous map $\gamma : [0, 1] \to X$ with

$$\gamma(0) = x$$
 and $\gamma(1) = y$.

Genrollary: Callina

Genrey set

a C is limited.

locally P John P A topological space (X, \mathcal{T}) is said to be/locally path \mathcal{T} has a basis \mathcal{B} such that every $B \in \mathcal{B}$ is path connected. Tycx, Then in X, I V path words.

Definition

connected

Connelled:

(U)^Z

Theorem

X connected and locally path connected $\Rightarrow X$ is path connected.

Given XeX, define A= EgeYi Jri to,13-1X

We x(0)= 7, x(114.

Clamp A is open, X-A is has.

= A= f a X-x-q Ato @ = X-A-p @ X pleth comede Agan JeA J Van ye VCA IV = path conn Abd b g

WEEV 3 pour

A from 9 to 2 Concaperate the hele

Quotient Spaces

Recall General Principle:

Let
$$X$$
 and Y be sets and let $\underbrace{f: X \to Y}_{\mathcal{C}}$

1. Given a topology \mathcal{T}_Y on Y there is a smallest topology \mathcal{T}_X on X that makes f continuous, namely $\mathcal{T}_X = \{f^{-1}(U) : U \in \mathcal{T}_Y\}.$

2. Given a topology \mathcal{T}_X on X there is a largest topology \mathcal{T}_Y that makes f continuous..

namely
$$\mathcal{T}_Y = \{ \underbrace{U \subset Y : f^{-1}(U) \in \mathcal{T}_X} \}.$$
 (Main case: f is surjective.)

() X = [0, 2m) Volume of (+1= eit cf =(estimut) = Ra

not conver "

V = [0,2] Openset us

V = f[0,2) not open un y

Analogy gps hrom

Sutype G = 9 guotient

Sps

When tollows tip.

about goutient tip.

The surjective

The surjective good tient to b

wouldnuss and U.

was In f(x) = d open

and To f(x) = d open

Examples

1. The subspace topology for $A \subset X$:

Given a topology \mathcal{T}_X on X, define

$$\mathcal{T}_A = \{A \cap U \mid U \in \mathcal{T}_X.\}$$

2. The quotient topology or identification topology for a surjective map

$$f: X \to Y$$

Given a topology \mathcal{T}_X on X, define

$$T_Y = \{ U \subset Y \mid f^{-1}(U) \in \mathcal{T}_X \}$$

Identification

A continuous surjective map $f:(X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ is called an *identification* if \mathcal{T}_Y is the identification topology just defined:

$$T_Y = \{U \subset Y \mid f^{-1}(U) \in \mathcal{T}_X\}$$

• Equivalently: $f: X \to Y$ is an identification \iff

$$U$$
 open in $Y \iff f^{-1}(U)$ is open in X

▶ Equivalently: $f: X \to Y$ is an identification \iff

$$F$$
 closed in $Y \iff f^{-1}(F)$ is closed in X

Examples

1. $f_1: \mathbb{R} \to \mathcal{S}^1$ defined by $f(t) = (\cos t, \sin t)$

2. $f_2:[0,2\pi) o S^1$ same formula.

3. $f_3:[0,2\pi]\to \mathcal{S}^1$ same formula.

t Went-freading t-rest

t-rest

t-rest

g

f-(Flehodr

Closed map to char = f(F) elva.

Open map vex ohn = f(T) ohen! - A often of F (A) then Elocal D f-(X-A) = f-(n-f-1) f(x-A) = f(A-f(A))77 f=ent ACX f(x-A) = M . ACX F(x) -14 + 0 R (xy) hen, not close

hot closed closed (py zi)?

hot oper

Recolli

fix -7 Y cont

bijection

of closed

(x1) = x1

f(about) = choose

(x1) = x1

CONT clused bijec = home.

Harriett

Closed map

Sufficient Conditions

1. $f: X \to Y$ continuous, surjective and $open \Longrightarrow$ identification.

2. $f: X \rightarrow Y$ continuous, surjective and $closed \Longrightarrow$ identification.

Examples

fix 7 y cont, open

want: JCY open

Er f-1(t) CX den.

fort: The of follow.

heed: floo open - U open

form
$$f(f^{-1}(u)) \in U^{\dagger}$$
 $f(f^{-1}(u)) \in U^{\dagger}$
 $f(f^{-1}(u)) \in U^{\dagger}$
 $f(f^{-1}(u)) \in U^{\dagger}$
 $f(f^{-1}(u)) = f(f^{-1}(u)) = f(f^{-1}$

◆□ ト ◆□ ト ◆ ■ ト ◆ ■ ・ ● へ ● ・

If f Smyechive

U = f (f)(01)

get = 12x e x st f(x) = g

xc f(0)
fthey yef (f(0))

Closed.

Checking Identifications

- ▶ Given $A \subset X$, when is $A = f^{-1}(B)$ for some $B \subset Y$?
- Useful facts for this purpose:
- ▶ Suppose $f: X \to Y$, $A \subset X$, $B \subset Y$. Then
 - **1**. $f(f^{-1}(B))$ ⊂ B
 - 2. If f is surjective, $f(f^{-1}(B)) = B$
 - 3. $A \subset f^{-1}(f(A))$.
 - 4. If *f* is surjective, then

$$A = f^{-1}(B)$$
 for some $B \subset Y \iff A = f^{-1}(f(A))$
and, in this case, $B = f(A)$.

Proofs

- First three assertions clear.
- ▶ Suppose f surjective and $A = f^{-1}(B)$ for some $B \subset Y$.
- ▶ Then $f(A) = f(f^{-1}(B)) = B$ by 2.
- ▶ So $A = f^{-1}(B) \implies B = f(A) \implies$ equality in 4:

$$A = f^{-1}(f(A))$$

Equivalence Relations

• $f: X \to Y$ surjective map of sets \iff

equivalence relation on X:

$$x_1 \sim x_2 \iff f(x_1) = f(x_2).$$

► $f: X \to Y$ surjective map of sets \iff Partition of X into disjoint subsets

$$X = \coprod_{y \in Y} f^{-1}(y)$$

E to the har Y = Set of lquir classes

* -> {yey: ynx} cy

Continuous Maps

- ► *X*, *Y*, *Z* topological spaces.
- $f: X \to Y$ identification,
- $g: Y \rightarrow Z$ a map.
- ▶ Then g is continuous $\iff g \circ f$ is continuous

get cont = 9 cm + (gof) (y) on = g*(v) m. f-1(g-1(v)) g-1(v) f-1 (g-1(v) Van & g-1(v) Am,

- Equivalent Formulation:
- ▶ X, Y, Z topological spaces, f : X → Y an identification.
- ▶ $h: X \to Z$ a map that is constant on the fibers $f^{-1}(y)$ of f.
- ► Then the map *g* in the following diagram is defined:

$$egin{array}{ccc} X & \stackrel{h}{\longrightarrow} & Z \\ f & \nearrow g & & & \\ Y & & & & & \end{array}$$

• g is continuous \iff h is continuous.

Example: Periodic functions $h : \mathbb{R} \to \mathbb{R}$

$$egin{array}{cccc} \mathbb{R} & \stackrel{h}{\longrightarrow} & \mathbb{R} \ f & \nearrow g \ S^1 & \end{array}$$

where $f(t) = (\cos t, \sin t)$.

Ex of equal rel toke x ~ y >] clouded get $C \subset X$ rycc.

Check ; segur rel equir classes: Connected components