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Recall: )

We proved the following statments about compactness:

» A compact metric space is bounded. ®
» A compact subspace of a metric space is closed.

» A subspace of R" is compact if and only if it is clgged

and bounded (Heine-Borel theorem) /Ay
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A compact subspace of a Hausdorff space is closed.
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Hausdorff is needed. ¢ @‘) cr

A closed subspace of a compact topological space is
compact.

A continuous image of a compact space is compact.

f: X — Y continuous Dc X compact = f(C)
compact.
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Closed Maps and Homeomorphisms

» The last few statements combine to give:

Theorem

» X compact space, Y Hausdorff space.
» f: X — Y continuous.
» Then C C X closed = f(C) is closed.
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Definition
f: X — Yisa closed map

=
for all closed subsets C C X, f(C) is closed in Y.
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Rephrase:
Theorem

» X compact space, Y Hausdorff space,
» f: X — Y continuous
» — f is a closed map.
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Consequence:
Theorem

» X compact space, Y Hausdorff space.
» f: X — Y continuous |bijection)
» —> f is a homeomorphism.
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nother useful fact:

Theorem

X compact, f : X — R continuous

— o e

f has a maximum and a minimum,

ie, 3@, Xo € X such that f(x1) < f(x) < f(x) Vx € X
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Finite intersection property

» X compacﬂwhenever {F.}aca is a collection of
closed setswith the property that all finite

intersections
Fo,N---NF,, .

are non-empty, then
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Bases and Compactness

Theorem
Let B be a basis for the topology of X. Then X is compact
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Every cover of X by elements of B has a finite sub-cover.
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Products

heorem
X,Y compact — X x Y is compact.
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Separation Properties

» A topological space X is said to be:

» Hausdorff < for all x,y € X, x # y, there exist open
Sets U, V C X such that

xeU yeV, and UNV =1
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» Regular < for all x € X and all closed sets C C X
with x ¢ C, there exist open sets U, V C X such that

xeU,CcCV, and UNV =10
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» Normal<— for all closed sets A, B ¢ X with
NB= xist open sets U, V C X such that

AcU BcV, and UNnV =10
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Theorem
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» (X, d) metric space. Have seen:
» (X, d) is Hausdorff.
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» Will see (in exercCises)
» (X, d)is regular.

» (X, d)is normal.






Connected Spaces

Definition
A topological space (X, T) is connected
=

if Y ¢ X is both open and closed, then either Y = X or
Y =10 -



Equivalent Formulations
Theorem

X is connected
=

Whenever U,V C X are open sets with X = UU V and
Un V =1, then either

U=0or V=1
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Theorem
X is connected
=

Whenever E, F C X are closed sets with X = E U F and
E N F =0, then either

E=0or F=0



Theorem

Let {0,1} have the discrete topology. Then X is
connected

—

Every continuous map f : X — {0,1} is constant.
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If Y C X, Y connected means: connected in the
subspace topology. —
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Koy,
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Theorem

he unit interval [0, 1] C R is connected.
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Path-Connected Space
Definition

A topological space X is said to be path connected

=
For all x, y € X there exists a continuous map
v :[0,1] — X with

1(0) = x and (1)
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Theorem
X path connected —> X connected.
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Definition

A topological space (X, 7)) is said to be locally path
connected

=
T has a basis B such that every B € B is path connected.



Theorem
X connected and locally path connected
= X is path connected.
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