

Introduction to Algebraic and Geometric Topology Week 8

Domingo Toledo

University of Utah

Fall 2017

Recall:

)o(

We proved the following statments about compactness:

A compact metric space is bounded.

▶ A compact subspace of a metric space is closed.

A subspace of \mathbb{R}^n is compact if and only if it is closed and bounded (Heine-Borel theorem)

* diorde | Soyack

- ► A compact subspace of a Hausdorff space is closed.
- ► Hausdorff is needed. ←
- A closed subspace of a compact topological space is compact.
- A continuous image of a compact space is compact.
- $f: X \to Y$ continuous, $C \subset X$ compact $\Longrightarrow f(C)$ compact.

ona C & for one of the

Closed Maps and Homeomorphisms

► The last few statements combine to give:

Theorem

- X compact space, Y Hausdorff space.
- $f: X \to Y$ continuous.
- ▶ Then $C \subset X$ closed $\Longrightarrow f(C)$ is closed.

Definition

 $f: X \rightarrow Y$ is a closed map

for all closed subsets $C \subset X$, f(C) is closed in Y.

Rephrase:

Theorem

- ▶ X compact space, Y Hausdorff space,
- $f: X \rightarrow Y$ continuous
- ightharpoonup \Longrightarrow f is a closed map.

Consequence:

Theorem

CONT.

Possible application: Cantor Set Thuis for 2 - middle 3 hos

Thuis for 2 - middle 3 hos

That I am an art of the chiral continuous c to it a homen? If we know 50,23 N; compar

Another useful fact:

Theorem

X compact, $f:X\to\mathbb{R}$ continuous

f has a maximum and a minimum,

ie, $\exists \widehat{x_1}, x_2 \in X$ such that $f(x_1) \leq f(x) \leq f(x_2) \ \forall x \in X$

$$f(x) \subset \mathbb{R}$$
 comput

Finite intersection property

• X compact \iff whenever $\{F_{\alpha}\}_{{\alpha}\in A}$ is a collection of closed sets with the property that all finite intersections

$$F_{\alpha_1}\cap\cdots\cap F_{\alpha_n}$$

are non-empty, then

$$\bigcap_{\alpha\in A}F_{\alpha}\neq\emptyset$$

Bases and Compactness

Theorem

Let \mathcal{B} be a basis for the topology of X. Then X is compact

 \iff

Every cover of X by elements of \mathcal{B} has a finite sub-cover.

Eny open men hus a finde show consgebory

The state of th

Products

Theorem

 $X, Y compact \Longrightarrow X \times Y is compact.$

(X, y) & Xr y

Ja Sh (x, y) & TJ x Va

= x & U2 = (2) cn x

y & V2 cn y

Whatelse is needed?

Jdin-Idn St. Von,-Von und di,--,dn A Vdi,-Vani enny

a femile en but is it a sub-cover U, VVe ~ U, XV, --- U, V, A way to find a sature, Stort. { (Lx V2) x GA Joseph Wex & Book 2x & Ind (1),, ---) dr (1) V, cm + V, cm 1--, d, (y),, ---) dn(, (y) $\int_{\Gamma} \int_{\Gamma} \int_{\Gamma$ ((x) } xcx open corer + X 7 U'(1),-- U'(x) fres a $U_{\alpha,(x_i)} \times V_{\alpha,(x_i)} , -- V_{\alpha,(x_i)} \times V_{\alpha,(x_i)}$ Volation & Variation -- - United to Variation Sore 1 M-a Porta
CE 118
(Cas -> -> acc)

Separation Properties

- ▶ A topological space *X* is said to be:
 - ► Hausdorff \iff for all $x, y \in X$, $x \neq y$, there exist open sets $U, V \subset X$ such that

$$x \in U$$
, $y \in V$, and $U \cap V = \emptyset$

▶ Regular \iff for all $x \in X$ and all closed sets $C \subset X$ with $x \notin C$, there exist open sets $U, V \subset X$ such that

Separate pts & clised sets

Normal for all closed sets $A, B \subset X$ with $A \cap B = \emptyset$ there exist open sets $U, V \subset X$ such that

 $A \subset U$, $B \subset V$, and $U \cap V = \emptyset$

An B= A

An B= A

An B= A

An B= A

Theorem A compact Hausdorff space is regular, ford U, V DEV) CCV UNV=9

Uy n Vy & P Use, CX cloud, Xerra-, C (Vy) ycc an open are of C =7] gn = 9 = C se C c Vy, v--- Vyn

- ► (*X*, *d*) metric space. Have seen:
 - ightharpoonup (X, d) is Hausdorff.

- ▶ Will see (in exercises)
 - ightharpoonup (X, d) is regular.

(X, d) is normal.

distance for

Connected Spaces

Definition

A topological space (X, \mathcal{T}) is *connected*

 \iff

if $Y \subset X$ is both open and closed, then either Y = X or

$$Y = \emptyset$$

Equivalent Formulations Theorem

X is connected

Whenever $U, V \subset X$ are open sets with $X = U \cup V$ and $U \cap V = \emptyset$, then either

$$U = \emptyset$$
 or $V = \emptyset$

ACX chen Celral EX=C, vCz C, Cuy Can = \$ = Cocon Cr=6

Theorem

X is connected

Whenever $E, F \subset X$ are closed sets with $X = E \cup F$ and $E \cap F = \emptyset$, then either

$$E = \emptyset$$
 or $F = \emptyset$

Theorem

Let $\{0,1\}$ have the discrete topology. Then X is connected

 \iff

Every continuous map $f: X \to \{0,1\}$ is constant.

If $Y \subset X$, Y connected means: connected in the subspace topology.

Known

Theorem

The unit interval $[0,1] \subset \mathbb{R}$ is connected.

t Complete of /k

Path-Connected Spaces Definition

A topological space *X* is said to be *path connected*

$$\iff$$

For all $x, y \in X$ there exists a continuous map $\gamma : [0, 1] \to X$ with

$$\gamma(0) = x$$
 and $\gamma(1) = y$.

Theorem

X path connected \Longrightarrow *X* connected.

$$n.t$$
 poly $= \frac{1}{2} \times \frac$

4 D > 4 D > 4 E > 4 E > E 990

Definition

gor mont to say to

A topological space (X, \mathcal{T}) is said to be *locally path* connected

 \mathcal{T} has a basis \mathcal{B} such that every $B \in \mathcal{B}$ is path connected.

Theorem

X connected and locally path connected

 \Longrightarrow X is path connected.

For Homework,

heed to Know

Basis for Topology

Product Topology

flere's some reviews

4

, 1

 \mathcal{I}

Jasis The (X)

A Up Span Topola on a set X; $\int_{X} c_{2}^{X}$ St. (1) $f \in J_X$, $X \in J_X$ z) chied when filmen $(U_A)_{ACA}$, lish $U_A \in J_A$ 3 V1, -- Nn & Jx = 10 1, -- Nn & Jx possible Tolks?

Wo Extremes: ind = 0, /} Jane = 2^X (X,d) melin there meture the i open nets in (X,d) Tischen ET Yxc U J (,,70 Sit. B(x, ra) c U. to is a sever of falls T= UB(x, rCn) A topology is metrizable I mere d on X St. 9 = topology of. (Xnd)

guin (X, Sx) and BCJX is called a hars for L Es sur Jes a aum of elements of B E YOUEL, HED JBEB SLACBED Balls B(x,r) form a bans for the top of (Kd).

Change pt of view;

Sprien sit X

Held a Collection D C J

define a topology on X with B as abase

Alm Jx = (all remon of elements of B) & USOS

 $R B = \{(0,0), \{5\}, [1,\infty)\}$

Phas to satisfy some Conditions for collection of all lunns love be a top alperi

Clear: Colection of all Opions is closed under arb union

X, p = V of elling of B

J = (all union of elenation of B) v [4]

assume; [X = union of elenation B] require

by head Collecter of union to

be closed level famile crosses.

At least;

Y Bir - Bin = B

= 8, n - n Bin = union of electrolo

Bring, Br & B and by & B, n - n Bin

A B & B

8t. 20BCB, 1-1Bm

Given a set X,

and BcJX

Satirfying: D ** xe X, J BeB

stixe B

 $2) \forall B_{1,-1}B_{n} \in B$ and $\forall x \in B_{1} \cap - \cap B_{n}$, $\exists B \in B$ with $x \in B \in B_{1} \cap - \cap B_{n}$

Then collection of all remains of B

Soly

Ba Eupology Son &

and Disabesis for

Lx.

Prime Example $(X,d) \text{ a methor, } \mathcal{B} = \begin{cases} \mathcal{B}(x,r) : x \neq x \\ + x = x \end{cases}$

defores a tholy on X,

with Bas Com. Other Rombo (x,a) SB(x, 1/n) Exex news B, B' both sctrty cord for bonn When do B&B' defree Same topology E R^2 , $B = \{ \text{Euleban balls} \}$ $B' = \{ \text{Tan-sab balls} \}$ Jan B'& B' is a me of elm of B -- Ben- -- BC

 = Chred under form "Enteras.

= Baros for a tholes.

By km for Sx By - Sy

Then De SUXV! VEBX, VFR;

Back (x,a) x (y,dy)

Product top on XxX

Lon Xxy

B(x0,90, r) = \{(x,9) ! may
d(x0, x), d(x0,14) 5r}

= B(x027), 1 B(20,2)