Introduction to Algebraic and Geometric Topology Week 6

Domingo Toledo

University of Utah

Fall 2017

Basis for a Topology

- (X, \mathcal{T}) topological space.
- Definition

 $[\mathcal{B}]\subset\mathcal{L}^{\times}$ is called a *basis for* $\mathcal{T}\Longleftrightarrow$

every element of \mathcal{T} is a union of elements of \mathcal{B} .

- Equivalent statement:
- ▶ \mathcal{B} is a basis $\iff \forall \mathcal{U} \in \mathcal{T}$ open,

 $\forall x \in U, \exists B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$.

Examples

$$(X,d) \text{ metric space.}$$

$$B = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x,r) : x \in X, r > 0\}$$

$$A = \{B(x$$

- (X, d) metric space, $E \subset X$ dense subset

• $(\mathbb{R}^n, d_{(2)})$ (or any equivalent d)

$$\mathcal{B} = \{B(x, \frac{1}{k}) : x \in \mathbb{Q}^n, \ k \in \mathbb{N}\}.$$

In the last example \mathcal{B} is *countable* (X, \mathcal{T}) s called second countable $\iff \mathcal{T}$ has a countable basis.

- ▶ Why "second"?
- ▶ Is there a "first countable"?
- Yes; a similar condition about any point $x \in X$

- \triangleright (X, \mathcal{T}) topological space and \mathcal{B} basis for \mathcal{T} .
- $f:(X',\mathcal{T}') \to (X,\mathcal{T})$ is continuous

$$f: (X', \mathcal{T}') \to (X, \mathcal{T}) \text{ is continuous}$$

$$\iff f^{-1}(B) \text{ open } \forall B \in \mathcal{B}.$$

$$= \bigcup_{\mathcal{B}} f'(\mathcal{B}_{\mathcal{S}})$$

$$= \bigcup_{\mathcal{B}} f'(\mathcal{B}_{\mathcal{S}})$$

- ▶ If $A \subset X$, then
 - $X \in A^o \iff \exists B \in \mathcal{B} \text{ with } x \in B \subset A.$
 - ▶ $x \in \overline{A} \iff B \cap A \neq \emptyset \ \forall B \in \mathcal{B} \text{ with } x \in B.$

Defining Topologies from a Basis

- A
- ► X non-empty set, $\mathcal{B} \subset 2^X$ satisfying:
- 1. $\forall x \in X \exists B \in \mathcal{B} \text{ such that } x \in B$.
 - 2. $\forall B_1, B_2 \in \mathcal{B}$ and $\forall x \in B_1 \cap B_2 \exists B \in \mathcal{B}$ such that $x \in B$

 $\models \{U \subset X | \forall x \in U \ \exists \underline{B} \in \mathcal{B} \text{ with } x \in B \subset U\} \cup \{\emptyset\}\}$

- and $B \subset B_1 \cap B_2$.
 - Then \mathcal{T} is a topology on X and \mathcal{B} is a basis for \mathcal{T} . $\mathcal{B}_{13}\mathcal{B}_{1} \in \mathcal{B}, \quad \mathcal{B}_{1}\mathcal{B}_{2} = \text{tens. } \mathcal{G} \text{ eller } \mathcal{G} \mathcal{B}$

- ightharpoonup Equivalent definition of \mathcal{T} :
- $ightharpoonup \mathcal{T}$ is the collection of the unions of all subcollections of \mathcal{B} (including the empty subcollection).

$$X, Y = S(x,y): x \in X, x \in Y$$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X, x \in Y$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X, x \in X$
 $X = S(x,y): x \in X$

Example: Product Topology

- \blacktriangleright (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) topological spaces.
- $X \times Y$ their Cartesian product.
- Let

Then
$$\mathcal{B}_{X\times Y}=\{U\cdot \times V\mid U\in \mathcal{T}_X \text{ and } V\in \mathcal{T}_Y\}$$
Then $\mathcal{B}_{X\times Y}$ satisfies conditions (1) and (2) above.

- ▶ Resulting $\mathcal{T}_{X \times Y}$ is a topology on $X \times Y$, called the Product Topology.

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ・ 夕 ○ ○

▶ Useful fact: if $A_1, A_2 \subset X$ and $B_1, B_2 \subset Y$, then

$$(A_1 \times B_1) \cap (A_2 \times B_2) = (A_1 \cap A_2) \times (B_1 \cap B_2)$$

$$(A_1 \times B_1) \cap (A_2 \times B_2) = (A_1 \cap A_2) \times (B_1 \cap B_2)$$

▶ $\mathcal{B}_{X \times Y}$ closed under finite intersections, but not under unions.

T. Cu,

▶ Look at $\mathbb{R} \times \mathbb{R}$

▶ Projections $p_X : X \times Y \to X$ and $p_Y : X \times Y \to Y$:

$$\underline{\rho_X(x,y)} = (x) \quad \underline{\rho_Y(x,y)} = (y).$$

▶ $\mathcal{T}_{X \times Y}$ is the smallest topology that makes both projections p_X and p_Y continuous.

Pr, Pr Cont (XxY, Jpw) And X

Pr'(v) oh V oder in Y

((x,y), R(x,v) \in U)

= ((x,y), R(x,v) \in U)

= ((x,y), X \in U)

= ((x),y), R(x,v) \in U)

Charac:

Suppose for a top on Xyy

St. Px, Py bith cont.

how does it relate to

Just definit bases

Xxy

Purvively

Veta

J'hasto contos SUx Y: Udma X7 = 91 for Px to be cont

{XXV : V of m m Y} & g' V THE STAND OF CUXY) CH Jxxy Smallest top on Xxy that makes Z. f. X.y. By X For (UxY) ohn Vunny Charac ?

f-1 (XxV) open - f-1 ((xxY)n (xxV)) of - f-1 ((xxY)n (xxV)) of - f-1 ((xxY)n (xxV)) of VxV eB ▶ $f: Z \to X \times Y$ continuous (w respect to $\mathcal{T}_{X \times Y}$) \iff both compositions $p_X \circ f$ and $p_Y \circ f$ are continuous.

Infinite Products

- A an index set.
- $\{X_{\alpha}\}_{{\alpha}\in A}$ a collection of *non-empty* sets indexed by *A*.
- ▶ $\coprod_{\alpha \in A} X_{\alpha}$ their disjoint union.
- ▶ The *product* of the X_{α} is defined as

Examples

• $A = \{1, 2\}$ then

$$\prod_{\alpha \in \{1,2\}} X_{\alpha} = \{f : \{1,2\} \to X_1 \coprod X_2 \mid f(1) \in X_1, f(2) \in X_2\}$$

Letting $x_1 = f(1)$ and $x_2 = f(2)$, this is the same as

$$\{(x_1,x_2) \mid x_1 \in X_1, x_2 \in X_2\}$$

which is the usual defintiion of $X_1 \times X_2$.

N IN COLOR PiA - U Ka fly) & X

ex! Xx Xz Shes

fire X, II X2

f(n e X),

crese x2

exp (f'(i), f(e))

exp (old det of X, y x)

Axrom of Choice

Given amorphy collect: (Ya)

Con three an elect f(a) & &

ET IT X & &

A X TOM of Choice

Thoreway

The continue an elect f(a) & &

The conti

Similarly, if $A = \{1, 2, ..., n\}$, a finite set, then $\prod_{\alpha \in A} X_{\alpha}$ gives the usual definition

$$X_1 \times X_2 \times \cdots \times X_n = \{(x_1, x_2, \ldots, x_n) \mid x_i \in X_i\}$$

Topology in Product Space

- ▶ Suppose *A* arbitrary and each X_{α} has a toplogy T_{α} .
- ▶ Let $\mathcal{B}_{\prod X_{\alpha}}$ be defined as follows.:
 - ▶ For each finite subset $F \subset A$ let \mathcal{U}_F be a collection

$$U_F = \{U_\alpha\}_{\alpha \in F}$$
 where $U_\alpha \in \mathcal{T}_\alpha$

► Then let

$$B(F, \mathcal{U}_F) = \{ f \in \prod X_\alpha \mid f(\alpha) \in U_\alpha \text{ for all } \alpha \in F \}$$

- ▶ Define $\mathcal{B}_{\prod X_{\alpha}}$ to be the collection of all $B(F, \mathcal{U}_F)$.
- ▶ Check: $\mathcal{B}_{\prod X_{\alpha}}$ is a basis.

▶ The resulting topology is called the *product topology*.

► Essence: Each $B(U_F)$ restricts only finitely many coordinates.

▶ For *A* finite get same basis as before.

▶ Suppose $A = \mathbb{N}$ and all $X_i = X$.

Then $B(F, U_F)$ is the set of all sequences $\{x_i\}$ such that $x_i \in U_i$ for $i \in F$.