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Topology of Metric Spaces

» (X, d) metric space.
» Recall the definition of Open sets:

. A e
Definition
U c X open set <= Vx € U dr > 0 so that
—
B(x,r)c U.




Examples .,
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» (R", d(z)) usual open sets.

» (X, d) discrete metric space = all sets are open.
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» Open sets in French railway metric.




» Examples on non-open sets:
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» Have seen that different metrics can give same open
sets.

> anple: (R", d(1y) or (R", d()): same open sets.

» Will concentrate on the collection of open sets, rather
than the metric,

»Q’his collection will be called the!Topo/ogy /

» First look more closely at open sets.




» Theorem
(X, d) metric space, x € X andr > 0 =

B(x, r) is an open set

» Proof? .
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» Theorem
(X, d) metric space, x € X andr > 0 =

{y € X|d(x,y) > r} is an open set .

» Proof? / //// . (
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Closed sets
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» Definition
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» Examples of closed sets:
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Continuous maps

» (X,d)and (Y, d’) metric spaces, f: X — Y

» Theorem
f is continuous

g
vUcCy,
openin(Y,d') =} f-1(U) dpenin(X,d).] €

B

» Briefly:
f continuous

=
the preimage of every open set is open.



» Review preimage f~'
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» Prove Theorem
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» Similarly, f is continuous <

the preimage of every closed set is closed:
» Proof: use f-1(A\ B) = f-1(A)\ f~(B).
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» Theorem Composition of continuous maps is
continuous.

» Knew this already, but now have shorter proof, since




» f:(X,d) — (Y, d") continuous. Then
Fisa homeomorphism <—

f is bijective and f(U) C Y is open for all U C X open.
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» f: X — Y bijective map (not assumed continuous).
Then

f is a homeomorphism <—-

BU isopenin X < f(U) is open in‘a




The collection of open sets in (X, d)

—

» Let
» A an index set (any cardinality)
> 2 a collection of open sets in (X, d)
indexed by A.
» Then
IS open







» Let Uy, ..., U be a finite collection of open sets.
v
» Then

is open.
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» /[Summary: The collection of open sets in (X, d) is
closed under the operations of

—

»Z Arbitrary union.)
»[ Finite intersection. ).
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» Equivalent statement:

The collection of closed sets in (X, d) is closed under
the operations of
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» Arbitrary intersection. J
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Topologies

» Turn these properties into a definition:

» Definition %
(Z%@,setaset@ ot = %7y
T is called a Topo ogy on X iff S\“"’";g,
(I3 7 Xk T) ¢

S—Aany index set, {U }-a collection of glements
U, € T indexed by A, then

M" U UaeT *
A/v{) ) a€cA

» Uy, ..., Uk any finite collection of elements U; € T,

[yf/'v / then
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» Briefly, a topology 7 on X' is
a collection of subsets of X (T c 2¥)
which contains the empty set, the whole set, and is
closed under the operations of arbitrary union and
finite intersection.
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Examples of Topologies

»[(X, d) any metric space, 7(x,q) the collection of its
. sets. ’<

» Two extreme examples of topologies:: q
il ¥ Whet 75 dhe larses/ poscpe Toprlay o s

» X any set, Tqisc = 27. Every set is open

» This is the.discrete topology, can be defined by the
discrete metric.

i; » X any set, Ting = @ the indiscrete topolo

l[“f -~ —_— .

f"y » Indiscrete topology not defined by any metric (if
cardinality of X at least 2).




» Intermediate example: A Compleac oF [rute
/

» [X any infinite set] Define 7@ c 2X by
. |[U=0(or
Ue if and only if
) € Ter y r Uis a finite set.
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Topological Spaces

» Definitions:

» A Topological space is a pair (X, T), where

KX is a set.,
»T c 2Xis a topology on X.

» If (X, T) is a topological space, then

» UcC Xisanopensetifandonlyif U € 7.

» F C X is aclosed set if and only if X'\ F_is open.
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» If 7 is a topology on X, its closed sets satisfy:

» X and () are closed sets.

» If Ais any index set and {F,}.ca is any collection of
closed set indexed by A, then

(P

acA
is closed.
» If Fq,..., Fx is a finite collection of closed sets,
Fru---UFg

is closed.



» A topology can be defined in terms of its closed sets.
» Example: X any set, define

F=X or

F c Xisclosed <— e
F is finite.

» Then the topology
T ={X\F | Fisclosed }

is the same as TcF above.
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Continuous Maps o
ontinuous Maps
» Definition

If (X, T), (X', T") are topological spaces and(f : X
then f: (X,7T) — (X', T") is continuous iff for all W

(V) eT. »
B8

< ) %

» Equivalent Characterization: f continuous < for all
T'-closed sets, f~1(F) is T-closed.
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Examples of Continuous Maps
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» (X, 7T)7any topological space.
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» Any (Xi,T7), (Xo, T2), f: Xi,— X constant.
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» X =R, two topologies: 7¢ Euclidean, 7¢r as above.

Compare usual continuous maps with continuous

maps ’
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> (R7 7-E) — (Rv TCF)

- - B se
(;rqf (f) b el




= = ~
o 5 = = E wac



Composition of Continuous Maps

» (X, T), (X', T"), (X", T") topological spaces.

» (X, T)—> (X, T)and g : (X', T") = (X", T")
continuous.

» Thengof: (X, T)— (X", T")is continuous.



Neighborhoods

» (X, T) topological space, x € X.

» Definition
A l\&ighborhood of@

is an open set U C X containing x.
In other words, x ¢ U C X
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Limits

» (X, T) topological spaceme X.

» Possible definition of lim{x,} = x:.
. T—_—\,.
» V neighbornoods U of x 3 N such that
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» Problem:(are limits unique?

» Example: In (R,7cF), let x, = n.
t
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HausidorﬁSpaces L cog der ft

> I\}\eed definition:

» Definition
(X, T) is called apace =

Vx,ye X, x#y,Inbds Uof x,Vofyst. UnV = 0.
—




» If X is Hausdorff, limits are unique.
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» Example:

» If (X, d) is a metric space, then it is Hausdorff. {1, I/—L%
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Interior, closure, boundary

-~

» (X, T)and E C X. Define:

» E°, the interior of E by [@r‘je’;f
P
E°=| J{U c X|U openand U C E}.
LK | P | } B
» E, the closure of E by
_ e
E =({F c X|F closed and E C F}. Sim el
- clese?
» OE, the boundary of Eby/\ JF

OE = E\ E°.
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» EC is the largest open set contained in E.
/\

» Possibly E° =
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» E is the smallest closed set containing E.

» Possibly E = X.



»Esopen@E: Ii]

» Hisclosed < E = E.







>3(€E°<:> 3nbd U of x with U C E.

4

> x € E<= Vnbds Uofx, UNE #§ 4&%

P —

%
¢ XW

- -
» X COE < Vnbds Uof x, UNE#(Qand UNE° # ()
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Basis for a Topologx

> (X, T) topological space.

{( Deflnltlon
f C 2% is called a basis for T <

every element of 7 is a union of elements of 5.

—



» Equivalent statement:
> Bis abasis < VU € T open,

Vx € U, 3B € B such that x € Band B c U.
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Examples

» (X, d) metric space,
—

[ B:{M):xex,r>0}
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» (X, d) metric space, E C X dense subset
» Recall : E dense <= E = X.

>

B/:{B(X,J—():XGX, k € N}.



» (R", d(2)) (or any equivalent d)
| 4

B:{B(X,:—():XGQH, k € N}.



» In the last example B is countable

» (X, T) is called second countable <= T has a
countable basis.



