Introduction to Algebraic and Geometric Topology Week 3

Domingo Toledo

University of Utah

Fall 2017

< ロ > < 団 > < 国 > < 国 > < 国 > < 国 > < 回 >

Lipschitz Maps

Source of Lipschitz Maps

- Differentiable maps with bounded derivative are Lipschitz.
- Proof for $f : \mathbb{R} \to \mathbb{R}$:
 - Suppose $\exists C > 0$ such that $f'(x) \leq C$ for all $x \in \mathbb{R}$.
 - Mean Value Theorem: ∀x, y ∈ ℝ ∃ξ between x and y s.t.
 f(x) f(y) = f'(ξ)(x y)
 Then
 |f(x) f(y)| = |f'(ξ)||x y| ≤ C|x y|
 Thus f is Lipschitz with Lipschitz constant C

◆□▶ ◆□▶ ◆∃▶ ∢∃▶ ▲□ ◆

Another Proof

- Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable and $\exists C > 0$ with $|f'(x)| \le C \ \forall x \in \mathbb{R}$
- ▶ Fundamental Theorem of Calculus: $\forall x, y \in \mathbb{R}$

- Again f is Lipschitz with Lipschitz constant C.
- This proof works in higher dimensions.

f: Rm -> Rn diff at * Flun trank df: R^m - R^m f(x+h)-f(r) = df(h) + E(y) 1 E (x, 6) / = 0 fe or = 1 hl = 0 fe or = 1 hl = 0 fe or =

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんの

Higher Dimensions

- Let $f : \mathbb{R}^m \to \mathbb{R}^n$ is differentiable with bounded derivative *df*.
- ▶ Recall: for each $x \in \mathbb{R}^m$,

$$d_x f: \mathbb{R}^m \to \mathbb{R}^n$$

is a linear transformation.

d_xf is the linear transformation that best approximates *f* near *x*

• Let $A : \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation.

(and is the smallest number with this property)

(lizat (At A)) 1/2 expense = |A|

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ④ ヘ ()

Bounded derivative

- Let $f : \mathbb{R}^m \to \mathbb{R}^m$ be differentiable.
- Say that *f* has bounded derivative if $\exists C > 0$ so that

 $d_x f \leq C$ for all $x \in \mathbb{R}^m$

- Suppose $x, y \in \mathbb{R}^m$.
- γ(t) = (1 − t)x + ty, 0 ≤ t ≤ 1 is the straight line segment from x to y.

$$f(y) - f(x) = \int_0^1 \frac{d}{dt} (f(1 - t)x + ty) dt$$

$$f(y) - f(x) = \int_0^1 \frac{d}{dt} (f(1 - t)x + ty) dt$$

$$\frac{d}{dt} (f(\gamma(t))) = (d_{\gamma(t)}f)(\gamma'(t))$$

$$For \gamma(t) = (1 - t)x + ty,$$

$$\int_0^{\gamma'(t)} y - x$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Putting all this together:

$$f(y)-f(x) = \int_{0}^{1} (d_{\gamma(t)}f)(y-x)dt = (\int_{0}^{1} (d_{\gamma(t)}f)dt)(y-x) dt$$

$$f(y)-f(x)| = \int_{0}^{1} (d_{\gamma(t)}f)dt fy - x = \int_{0}^{1} |d_{\gamma(t)}f| dt |y-x|$$

$$f(y)-f(x)| = \int_{0}^{1} C dt |y-x| = C|y-x|$$

$$f(y) - f(x)| \le C|y-x|$$

▲□▶▲□▶▲≧▶▲≧▶ ≧ のへぐ

$$\begin{aligned} f(y) - f(y) &= \left(\int_{0}^{1} (g_{\sigma(y)} +) dt\right)(g - x) \\ \frac{1}{f(y)} - f(y) &= \left| \left(\int_{0}^{1} (g_{\sigma(y)} +) dt\right)(y - x) \\ &\leq \left| \int_{0}^{1} (g_{\sigma(y)} +) dt\right| (y - x) \\ &\leq \left(\int_{0}^{1} \int_{0}^{1} (g_{\sigma(y)} +) dt\right)(y - x) \\ &\leq \left(\int_{0}^{1} \int_{0}^{1} (g_{\sigma(y)} +) (g_{\sigma(y)} +) dt\right) \\ &\leq \left(\int_{0}^{1} \int_{0}^{1} (g_{\sigma(y)} +) (g_{\sigma(y)} +) (g_{\sigma(y)} +) (g_{\sigma(y)} +) dt\right) \\ &= \left(\int_{0}^{1} (g_{\sigma(y)} +) (g_{\sigma(y)}$$

Conclusion

Suppose

- $f : \mathbb{R}^m \to \mathbb{R}^n$ is differentiable,
- $\exists C > 0$ such that $|d_x f| \le C$ for all $x \in \mathbb{R}^n$

• Then for all
$$x, y \in \mathbb{R}^n$$

$$|f(y)-f(x)|\leq C|y-x|$$

that is, f is Lipschitz with Lipschitz constant C. ſ

 $a(x,y) = \sum_{y \to x} \frac{f(y) - f(y)}{y - x} \quad x \notin y$) f (x) if K=9 cont for a in 12mm (

・ロト・国・・国・・国・ しょう

works.

・ロト・四ト・日本・日本・日本

If f is differentiable, this is implied by |a(x, y)| bounded. More maps of metric spaces

(C) d $(Y, y) \neq d$ (f_{Y}, f_{y}) fx=fy $= d^{(f_{x},f_{y})} = 0$ $\Rightarrow d(x, y) = 0$ & M $(f x, F_{1})$ injecture

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへぐ

ζ

▲□▶▲圖▶▲≣▶▲≣▶ ■ のなぐ

Equivalences between metric spaces

• Let $f: (X, d) \rightarrow (Y, d')$. Say:

- ► *f* is a *homeomorphism* iff *f* is continuous, $f^{-1}: Y \to X$ exists, and f^{-1} is continuous.
- If a homeomorphism f exists, we say that (X, d) and (Y, d') are homeomorphic.
- f is a bi-Lipschitz equivalence iff f is surjective and bi-Lipschitz.
- If a bi-Lipschitz equivalence exists we say that (X, d) and (Y, d') are bi-Lipschitz equivalent.
- ► The spaces (X, d) and (Y, d') are *isometric* iff there exists a surjective isometry f : (X, d) → (Y, d').

Strjetive: domain of f' rs all of Y

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Examples

•
$$(\mathbb{R}^{n}, d_{(1)}), (\mathbb{R}^{n}, d_{(2)})$$
 and $(\mathbb{R}^{n}, d_{(\infty)})$ are all bi-Lipschitz
equivalent.
• This is the content of the inequalities
1. $d_{(2)}(x, y) \leq d_{(1)}(x, y) \leq \sqrt{n} d_{(2)}(x, y)$.
2. $d_{(\infty)}(x, y) \leq d_{(2)}(x, y) \leq \sqrt{n} d_{(\infty)}(x, y)$.
3. $d_{(\infty)}(x, y) \leq d_{(1)}(x, y) \leq n d_{(\infty)}(x, y)$.
• $d_{(1)}(x, y) \leq d_{(1)}(x, y) \leq n d_{(\infty)}(x, y)$.

▲□▶▲□▶▲≣▶▲≣▶ ▲□ ● ● ●

n

Which make scare
$$n R^{\infty}$$
?
 $d_{z}(x_{1})^{2}$
 $\left| \begin{array}{c} | x |_{z} \leq |x|_{1} \\ | x |_{z} \leq |x|_{z} \\ | x |_{z} \\ | x |_{$

(Z) & (1) not ison effor

R^L, d_{ci}) K inneke R^L, d_{co}

Are these isometric?

▲日▼▲圖▼▲国▼▲国▼ 回 めんの

Infinite dimensions \mathbb{R}^{n}

• Look at the space
$$\mathbb{R}^{\infty}$$
 of sequences

$$\boldsymbol{x} = (x_1, x_2, \dots)$$

of real numbers, which are eventually zero:

$$\forall x$$
 $\exists N = N(x)$ such that $i > N \Longrightarrow x_i = 0$.

- It's important that N = N(x). If it were independent of x, then we would be talking about \mathbb{R}^N .
- ► Equivalently, could think of ℝ[∞] as the set of finite, but arbitrarily long, sequences of real numbers.

- The (1), (2) and ∞ metrics are still defined. It is easier to look at the norms. For a fixed x ∈ ℝ[∞],
- |x|₍₁₎ = ∑_{i=1}[∞] |x_i| is a finite sum.
 |x|₍₂₎ = (∑_{i=1}[∞] x_i²)^{1/2} is a finite sum.
 |x|_(∞) = sup{|x_i|} is the sup of a finite set.
 Are these bi-Lipschitz equivalent?

(om pl-etenes any Xid has a completion $(i) \rightarrow IR$ $\mathbb{R}^{2}, d_{0} = 7$ not complete

▲□▶▲@▶▲≣▶▲≣▶ ≣ めぬぐ

Completions

- \blacktriangleright \mathbb{R}^{∞} , with any of the three metrics, is *not* complete.
- The completions are spaces of infinite sequences

 $x = (x_1, x_2, \dots), x_i \in \mathbb{R}$

with appropriate convergence properties:

 Completion of the (1) norm: the space l¹ of infinite sequences x satisfying

$$\sum_{i=1}^{\infty} |x_i| < \infty$$

• Completion of (2)-norm: the space ℓ^2 of all x with

$$\sum_{i=1}^{\infty} |x_i|^2 < \infty$$

- For (∞) -norm, the space ℓ^∞

$$\sup\{|x|_i, i=1,2,\ldots\} < \infty$$

11. Xn = (1, 1/2, -., 1/2, 0, -. e)

(n Ka Chase & - Seg Child positive real hum 20 9 2120 i'el

▲口▶▲舂▶▲差▶▲差▶ 差 のへぐ

(In) Canhan, pot convergent

$$X = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right)$$

Completronic $X = S Q_1 G_1 - G_n - Y S$ ContractorZ [a c] < CL

Groups of isometries

- If (X, d) is a metric space, the collection of all surjective isometries f : (X, d) → (X, d) forms a group
- Operations: Composition, inversion.
- We will compute some of these groups.

► Group: A set G • An element $e \in G$. • A map $G \times G \rightarrow G$ (group multiplication): $(g,h) \rightarrow gh$ • A map $G \rightarrow G$ (inversion): $g
ightarrow g^{-1}$ Satisfying: Assoc. ed. • For all $g_1, g_2, g_3 \in G$, $(g_1g_2)g_3 = g_1(g_2g_3)$ For all $\tilde{g} \in G$, eg = ge = g▶ For all $g \in G$, $gg^{-1} = g^{-1}g = e$ 1h1.

- Main example for us: groups of isometries.
- Let (X, d) be a metric space.
- Let $\mathcal{I}(X)$ be the set of all surjective isometries $f: (X, d) \to (X, d)$.
- If *f* ∈ *I*(*X*), let *f*⁻¹ be the usual inverse function. It exists because *f* is both injective and surjective.
- Let *e* be the identity map $id : X \to X$.

f, g inom $= f \cdot g \quad \text{im} \\ d(f(gG), f(g(f)) = d(x, g)$

Ô f 150 9 d(f(g(x))), f(g(y))= d(x,y)n d (g(s), g(y)) dly, y d(mv) = d(f'u, f'v)J-1 pm

• Check that $\mathcal{I}(X)$ is a group:

e = ul

- f, g isometries $\implies f \circ g$ isometry.
- $(f \circ g) \circ h = f \circ (g \circ h)$ holds for maps of spaces.
- *f* ∈ *I*(*X*) ⇒ inverse map *f*⁻¹ exists, and *f* ∘ *f*⁻¹ = *f*⁻¹ ∘ *f* = *id* by definition of inverse map.

if (4) = ¥

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Any metric space has at least one isometry id.
- In general, don't expect to have any others
- Let's look at \mathbb{R}^n with any one of the (1), (2), or (∞) metrics.
- There are always infinitely many isometries: Translations.
- ▶ Fix $v \in \mathbb{R}^n$. Define $t_v : \mathbb{R}^n \to \mathbb{R}^n$, translation by v, by

$$t_{v}(x)=x+v.$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$$

• $t_v(x)$ is an isometry. If |x| is any norm on \mathbb{R}^n , the corresponding distance is

$$d(x,y) = |y-x|$$

Therefore

 $d(t_{v}(x), t_{v}(y)) = |(y + v) - (x + v)| = |y - x| = d(x, y)$

 Thus translations are isometries (for any distance given by a norm).

$$\frac{\operatorname{teretcb}\operatorname{Im} R}{\operatorname{ISOMetry}} \quad \frac{\operatorname{fitz}_{n} G_{0} d}{\operatorname{Ctry}_{n}} \\ \frac{\operatorname{Ctry}_{n}}{\operatorname{Ctry}_{n}} \\ \frac{\operatorname{Ctry}_{n}}{\operatorname{Ctr$$

- Are there any other isometries of Rⁿ (in any of the norms?)
- Can you think of one other that always exists?
- Concentrate on \mathbb{R}^2 (just to draw pictures)
- Fix a norm on \mathbb{R}^2 . Suppose $f : \mathbb{R}^2 \to \mathbb{R}^2$ is an isometry.

• Let
$$g = t_{-f(0)} \circ f$$
, so $g(x) = f(x) - f(0)$.

• Then g(0) = 0, that is, g fixes the origin, and

$$f = t_{f(0)} \circ g$$

$$f_{1}R^{n} \rightarrow R^{n} rson$$

$$f_{1}R^{n} \rightarrow R^{n} rson$$

$$f_{1}r^{(n)}$$

$$f_{1}r^{(n)}$$

$$f_{2}r^{(n)}$$

$$f_{2}r^{(n)}$$

$$f_{2}r^{(n)}$$

$$f_{2}r^{(n)}$$

$$f_{3}r^{(n)}$$

$$f = f(g) f(g) \tau$$

$$f(g) \tau$$

$$f = t_v \circ g, \text{ or } f(x) = g(x) + v,$$

where g is an isometry fixing the origin.

In practical terms: _____

To find all isometries of \mathbb{R}^n , enough to find all isometries fixing the origin

HWI Lo for IR?, Kavricas 8 isometim ----) all isonlass

J = timber Schift Jo - inns brig Or Subgroups of J Is either one normal,

- In the homework you'll work out the group *I*₀ for the taxicab metric in ℝ². You'll see it's rather small.
- From this you'll know all isometries of ℝ² with the taxicab distance.
- Next we'll work out the group *I*₀ for the usual Euclidean distance in ℝ².

- Observe that the set of all isometries fixing the origin is a *sub-group* of the group \$\mathcal{I}(\mathbb{R}^n)\$.
- We see two subgroups of $\mathcal{I}(\mathbb{R}^n)$:
 - \mathcal{T} , the subgroup of translations.
 - $\blacktriangleright \ {\cal I}_0,$ the subgroup fixing the origin
- All isometries are obtained by combining these two types (in a very precise way).

- In the homework you'll work out the group *I*₀ for the taxicab metric in ℝ². You'll see it's rather small.
- From this you'll know all isometries of ℝ² with the taxicab distance.
- Next we'll work out the group *I*₀ for the usual Euclidean distance in ℝ².