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Lipschitz Maps

1S 7
( » Recall f: (X,d) — (X', d") is Lipschitz ift 3C > 0 such
O/ (frl -{a) that
Z [ (7). () <@l(x yT}
A(x9) - :
holds for all x,y € X

W » Lipschitz = uniformly continuous = continuous.
‘—_/ﬂ —
L (_  » None can be reversed. I

» Keep example_iln/ml_nd.

(\b f(x) = x? continuous on R, not uniformly continuous.

» f(x) = v/x uniformly continuous on [0, o), not
Lipschitz.
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Source of Lipschitz Maps

» Differentiable maps with bounded derivative are
Lipschitz.

» Proof for f : R — R:

» Suppose 3C > 0 such that f'(x) < C for all x € R.
» Mean Value Theorem: Vx, y € R 3¢ between x and y
[

s.t. -

f(x) = f(y) = F(fx —y

» Then

» Thus f is Lipschitz with Lipschitz constant C






Another Proof

» Suppose f: R — R is differentiable and 3C > 0 with
If(x)| < CVxeR

Fundamental Theorem of Calculus: Vx, y € R

? _fx)]:/ f'(t)dt ffémf

Then (say, wlog, x < y {EI [ﬂ%.—

1)~ 1001 =1 [ re dt|</.40|y ]

Again f is Lipschitz with Lipschitz constant
This proof works in higher dimensions.
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Higher Dimensions

» Let f: R™ — R" is differentiable with bounded
derivative df.

» Recall: for each x € R,

a,f :R" - R”

——

is a linear transformation.

» d,f is the linear transformation that best
approximates f near x






Norm of a Linear Transformation

«—

)

» Let A: R™ — R" be a linear transformation.
» The norm of |A| is defined as

Al =sup( ™M | x 20}

kS
» It has the property that

LAx+\§ |A||)51°For all x e R™

(andis the smallest number with this property)
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Bounded derivative

v

Let f: R™ — R be differentiable.
Say that f has bounded derivative if 3C > Q so that
D — —

—

g Cforall x € R™

Suppose x, y € R™.
v(t) = (1 —t)x+ ty,0 <t <1isthe straight line
segment from x to y.
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» Fundamental Theorem of Calculus:

I8

» Chain Rule

i) = (@QQ’(_{))
» For~(t)=(1—t)x + ty,




AN (YALRS
» Putting all this together: ¢x ¢ N\p.¢ (1w
I
t

—10g = /th()' oar —X))

Therefore
1
/V(dw(t)f)dt@/—‘V></o |d,y(t)f| dt|y—x|
40

> whichis < [ C dt|ly — x| = Cly — x|
» Thus

[Fy)—=f(x)] =

[—

() = f() < Cly — x|
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Conclusion

» Suppose
» f:R™ — R"is differentiable,
» 3€ > 0 such that |dxf| < Cfor all x € R”

» Thenforall x,y € R”,

) - 1001 < ey —xD

—

that is, f is Lipschitz with Lipschitz constant C.

o




Remark

o ————

» Note: f need not be defined on all of R”.

» Looking at the proof, all we needed was f defined on

an open, convex subset of R”.
l
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ﬂCIose relation Lipschitz « differentiablej

\ Done

have seen that f : R™ — R" differentiable, bounded
derivative = f Lipschitz.

Also true: f: R™ — R” Lipschitz = f is differentiable
“almost everywhere”

More precisely
» df exists a.e. f\
» |df| is bounded a.e.

a. e. means outside set of measure zero.
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» f: R — R continuously differentiable +—

()~ 10) = alx )y - x) |
for some contmuous function a(x, y)

» In fact,
oy 00 | TEX
’ Yk, ) Nt

y do =)

e

/ A

» Observe a(x, x) = f'(x)




» In higher dimensions

FYNC f(X)

doesn’t make sense, but
—
(y) ~ 1) = ax.y)y — x)_J

makes sense if a(x, y) is a matrix-valued function.
» We have seen

1
a(x,y) = [ (dia-nx+tf)at
0

works.
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observe that in higher dimensionsga(x, y)rnot unique
Except when x = y: T

a(x, x) = axf

T L

Lipschitz «<—

is bounded.

If f is differentiable, this is implied by |a(x, y)|
bounded.



More maps of metric spaces
/

» f:(X,d) — (X', d') is called bi-Lipschitz if there exist
consants Cy,C, > 0sothat —

(Cltx.y) < d(100), 1(9)) <(CPx. ).

N~

» If fis bi-Lipschitz,then o

~fis Lipschitz ¢

» Fis Mjective: f(x) = f(y) = d(x,y) =0

» [£51 : f(X) — Xis Lipschitz, with Lipschitz constant
1
Ci- -

> If f is surjective, then f~1 : X’ — X exists and is

Cipschitz. .o~
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» f:(X,d) = (X', d') is called an isometry iff

—~—

forall x,y € X.
» Isometry = lgi—Lipschitz with both Q‘, C,=1.
» fisometry —> -
=1 f(X) = X

is also an isometry.







Equivalences between metric spaces
\/\/\—\—/“”
> Letf: (X,d) — (Y, d). Say:

» fis a homeomorphismiff f is continuous, f~1: Y — X
exists; and f~' is continuoTs:. —

» If a homeomorphism f exists, we say that (X, d) and
(Y, d’) are homeomorphic.

» fis a bi-Lipschitz equivalence iff f is surjective and
bi-Lipschitz. -

—
» |If a bi-Lipschitz equivalence exists we say that (X, d)
and (Y, d’) are bi-Lipschitz equivalent.

» The spaces (X, d) and (Y, d’) are isometric iff there
exists a surjective isometry f : (X,;d) — (Y, d").
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Examples

> (R7,d1)), (R", d(z)) and (R”, d(c,)) arei_all bi-Lipschitz

equivalent. - . M
> This i n inequalities (@ 1)
_—?/R.\du//

1.(d)(x,y) < d(1)(X;}j§ Vn dgy(x, y).
t s Lprhe

2. ‘d(oo)(xay) < d(2)(X7y) < \/ﬁd(oo)(xay)
3. d(oo)(xvy) < d(1)(X7y) < nd(oo)(xvy)'

e » (R oty) | RN A
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Figure: Bi-Lipschitz equivalence of the 1,2, co metrics

» Are any two of these isometric?
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-




» Higher dimensions?

> FoIook at the unit spheres of (1) and (c0)
metrics

(i) Coo )

» Are these isometric?
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Infinite dimensions R™

» Look at the spaceof sequences

X = (X1, X2,...)
of real numbers, which are eventually zero:

HN = N(x) suchthati > N = x; = 0.

s

> It's important that N = N(x). If it were independent of
x, then we would be talking about RV.

» Equivalently, could think of R*> as the set of finite, but
arbitrarily long, sequences of real numbers.



» The (1), (2) and oo metrics are still defined. It is
easier to look at the norms. For a fixed x € R,

> ||y = 20724 X is a finite sum.
”_—_1
> [x]2) = (X724 X2)z is a finite sum.
> [X](o0) = SMIS the sw set.
» Are these bi-Lipschitz equivalent?
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Completions

» R>°, with any of the three metrics, is not complete.
» The completions are spaces of infinite sequences

X=(X1,X,...), X, €R

with appropriate convergence properties:
» Completion of the (1) norm: the space ¢' of infinite
sequences x satisfying

Z |X,‘| < o0
i=1
» Completion of (2)-norm: the space ¢2 of all x with
> P < oo
i=1

» For (c0)-norm, the space ¢>°

sup{|x|;,i=1,2,...} <0
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LGroups of isometries

» If (X, d) is a metric space, the collection of all
surjective isometries f : (X, d) — (X, d) forms a
group

» Operations: Composition, inversion.

» We will compute some of these groups.



» Group:
» Aset G

» An element% r G.
» Amap G x G — G (group multiplication):

» Amap G — G (inversion):
AN

99"
oz
» Satisfying:
<r
» Forall g1,02,93 € G, (9192)93 = 91(9293) ’4;5 7
» Forall§€eG,eg=ge=¢9 .
» Forallge G,gg ' =g 'g=¢e /ha,



Main example for us: groups of isometries.
_——/’-\

Let (X, d) be a metric space.

Le be the set of all surjective isometries
f: (X, d)—(X,d). —

If f,g € Z(X), let fg = f o g, the composition of f and

g™ —
(fog)(x) = f(a(x))

If f € Z(X), let f~' be the usual inverse function. It
exists because f is both injective and surjective.

Let e be the identity map id : X — X.
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Check that Z(X) is a group:
f, g isometries = f o g isometry. o
(fog)oh=1fo(go h)holds for maps of spaces.

f € Z(X) = inverse map f~! exists, and
fof'=f"1of=id
by definition of inverse map.
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» Any metric space has at least one isometryj id.

» In general, don’t expect to have any others

»( Let's look at R" with any one of the (1), (2), or (oc) )
metrics.

» [There are always infinitely many isomet%
Translations.

» Fix v € R". Define t, : R" — R”, translation by v, by
E———

(X)) =x+v.






» [t,(x) is an isometry. If |x| is any norm on R”, the
corresponding distance is

d(x,y) =y — x|

» Therefore

d(t,(x), t(y)) = [y +v) = (x+ V)| = ly = x| = d(x, y)

» Thus translations are isometries (for any distance
given by a norm).
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Are there any other isometries of R” (in any of the
norms?)

Can you think of one other that always exists?
Concentrate on R? (just to draw pictures)
~~——M—

Fix a norm on R2. Suppose f : R? — R? is an
isometry.

Let g = t o) o f, so g(x) = f(x) — £(0).
Then g(0) = 0, that is, g fixes the origin, and

f=twog






» Conclusion: Every isometry f of R” is a composition
f — tv 9] g, 'OI’
—_— f(x) = g(x)+ v,
where g is an isometry fixing the origin.

» In practical terms:

To find all isometries of R", enough to find all
isometries fixing the origin






» In the homework you’ll work out the group Z, for the
taxicab metric in R2. You'll see it's rather small.

» From this you'll know all isometries of R? with the
taxicab distance.

» Next we’ll work out the group Z, for the usual
Euclidean distance in R?.



» Observe that the set of all isometries fixing the origin
is a sub-group of the group Z(R").

» We see two subgroups of Z(R"):

» T, the subgroup of translations.
» Ty, the subgroup fixing the origin

» All isometries are obtained by combining these two
types (in a very precise way).



» In the homework you’ll work out the group Z, for the
taxicab metric in R2. You'll see it's rather small.

» From this you'll know all isometries of R? with the
taxicab distance.

» Next we’ll work out the group Z, for the usual
Euclidean distance in R?.



