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Lipschitz Maps

I Recall f : (X , d) ! (X 0, d 0) is Lipschitz iff 9C > 0 such
that

d

0(f (x), f (y))  d(x , y)

holds for all x , y 2 X

I Lipschitz =) uniformly continuous =) continuous.
I None can be reversed.
I Keep examples in mind:

I
f (x) = x

2 continuous on R, not uniformly continuous.
I

f (x) =
p

x uniformly continuous on [0,1), not
Lipschitz.



Source of Lipschitz Maps

I Differentiable maps with bounded derivative are
Lipschitz.

I Proof for f : R ! R:
I Suppose 9C > 0 such that f

0(x)  C for all x 2 R.
I Mean Value Theorem: 8x , y 2 R 9⇠ between x and y

s.t.
f (x)� f (y) = f

0(⇠)(x � y)

I Then

|f (x)� f (y)| = |f 0(⇠)||x � y |  C|x � y |

I Thus f is Lipschitz with Lipschitz constant C





Another Proof

I Suppose f : R ! R is differentiable and 9C > 0 with
|f 0(x)|  C 8x 2 R

I Fundamental Theorem of Calculus: 8x , y 2 R

f (y)� f (x) =

Z
y

x

f

0(t)dt

I Then (say, wlog, x < y )

|f (y)� f (x)| = |
Z

y

x

f

0(t)dt | 
Z

y

x

|f 0(t)|dt = C|y � x |

I Again f is Lipschitz with Lipschitz constant C.
I This proof works in higher dimensions.







Higher Dimensions

I Let f : Rm ! Rn is differentiable with bounded
derivative df .

I Recall: for each x 2 Rm,

d

x

f : Rm ! Rn

is a linear transformation.
I

d

x

f is the linear transformation that best
approximates f near x





Norm of a Linear Transformation

I Let A : Rm ! Rn be a linear transformation.
I The norm of |A| is defined as

|A| = sup{|Ax |
|x | | x 6= 0}

I It has the property that

|Ax |  |A||x | for all x 2 Rm

(and is the smallest number with this property)





Bounded derivative

I Let f : Rm ! Rm be differentiable.
I Say that f has bounded derivative if 9C > 0 so that

|d
x

f |  C for all x 2 Rm

I Suppose x , y 2 Rm.
I �(t) = (1 � t)x + ty , 0  t  1 is the straight line

segment from x to y .





I Fundamental Theorem of Calculus:

f (y)� f (x) =

Z 1

0

d

dt

(f (1 � t)x + ty)dt

I Chain Rule

d

dt

(f (�(t))) = (d�(t)f )(�
0(t))

I For �(t) = (1 � t)x + ty ,

�0(t) = y � x



I Putting all this together:

f (y)�f (x) =

Z 1

0
(d�(t)f )(y�x)dt =

⇣Z 1

0
(d�(t)f )dt

⌘
(y�x)

I Therefore

|f (y)�f (x)| = |
Z 1

0
(d�(t)f )dt ||y�x | 

Z 1

0
|d�(t)f | dt |y�x |

I which is 
R 1

0 C dt |y � x | = C|y � x |
I Thus

|f (y)� f (x)|  C|y � x |





Conclusion

I Suppose
I

f : Rm ! Rn is differentiable,
I 9C > 0 such that |d

x

f |  C for all x 2 Rn

I Then for all x , y 2 Rn,

|f (y)� f (x)|  C|y � x |

that is, f is Lipschitz with Lipschitz constant C.



Remark

I Note: f need not be defined on all of Rn.
I Looking at the proof, all we needed was f defined on

an open, convex subset of Rn.





Close relation Lipschitz $ differentiable

I have seen that f : Rm ! Rn differentiable, bounded
derivative =) f Lipschitz.

I Also true: f : Rm ! Rn Lipschitz =) f is differentiable
“almost everywhere”

I More precisely
I

df exists a.e.
I |df | is bounded a.e.

I a. e. means outside set of measure zero.





I
f : R ! R continuously differentiable ()

f (y)� f (x) = a(x , y)(y � x)

for some continuous function a(x , y)

I In fact,

a(x , y) =
f (y)� f (x)

y � x

I Observe a(x , x) = f

0(x)



I In higher dimensions

f (y)� f (x)

y � x

doesn’t make sense, but

f (y)� f (x) = a(x , y)(y � x)

makes sense if a(x , y) is a matrix-valued function.
I We have seen

a(x , y) =

Z 1

0
(d((1�t)x+ty)f )dt

works.



I observe that in higher dimensions a(x , y) not unique
I Except when x = y :

a(x , x) = d

x

f

I Lipschitz ()
|f (y)� f (x)|

|y � x |
is bounded.

I If f is differentiable, this is implied by |a(x , y)|
bounded.



More maps of metric spaces

I
f : (X , d) ! (X 0, d 0) is called bi-Lipschitz if there exist
consants C1,C2 > 0 so that

C1d(x , y)  d

0(f (x), f (y))  C2d(x , y).

I If f is bi-Lipschitz,then
I

f is Lipschitz
I

f is injective: f (x) = f (y) =) d(x , y) = 0
I

f

�1 : f (X ) ! X is Lipschitz, with Lipschitz constant
1

C1
.

I If f is surjective, then f

�1 : X

0 ! X exists and is
Lipschitz.







I
f : (X , d) ! (X 0, d 0) is called an isometry iff

d

0(f (x), f (y)) = d(x , y)

for all x , y 2 X .
I Isometry = bi-Lipschitz with both C1,C2 = 1.
I

f isometry =)
f

�1 : f (X ) ! X

is also an isometry.





Equivalences between metric spaces
I Let f : (X , d) ! (Y , d 0). Say:

I
f is a homeomorphism iff f is continuous, f

�1 : Y ! X

exists, and f

�1 is continuous.

I If a homeomorphism f exists, we say that (X , d) and
(Y , d 0) are homeomorphic.

I
f is a bi-Lipschitz equivalence iff f is surjective and
bi-Lipschitz.

I If a bi-Lipschitz equivalence exists we say that (X , d)
and (Y , d 0) are bi-Lipschitz equivalent.

I The spaces (X , d) and (Y , d 0) are isometric iff there
exists a surjective isometry f : (X , d) ! (Y , d 0).





I isometry =) bi-Lipschitz =) homeomorphism.
I None can be reversed.



Examples

I (Rn, d(1)), (Rn, d(2)) and (Rn, d(1)) are all bi-Lipschitz
equivalent.

I This is the content of the inequalities
1. d(2)(x , y)  d(1)(x , y) 

p
n d(2)(x , y).

2. d(1)(x , y)  d(2)(x , y) 
p

n d(1)(x , y).

3. d(1)(x , y)  d(1)(x , y)  n d(1)(x , y).





I Picture for n = 2

Figure: Bi-Lipschitz equivalence of the 1, 2,1 metrics

I Are any two of these isometric?





I Higher dimensions?
I For n = 3, look at the unit spheres of (1) and (1)

metrics

I Are these isometric?





Infinite dimensions

I Look at the space R1 of sequences

x = (x1, x2, . . . )

of real numbers, which are eventually zero:

8x 9N = N(x) such that i > N =) x

i

= 0.

I It’s important that N = N(x). If it were independent of
x , then we would be talking about RN .

I Equivalently, could think of R1 as the set of finite, but
arbitrarily long, sequences of real numbers.



I The (1), (2) and 1 metrics are still defined. It is
easier to look at the norms. For a fixed x 2 R1,

I |x |(1) =
P1

i=1 |xi

| is a finite sum.

I |x |(2) = (
P1

i=1 x

2
i

)
1
2 is a finite sum.

I |x |(1) = sup{|x
i

|} is the sup of a finite set.

I Are these bi-Lipschitz equivalent?







Completions
I R1, with any of the three metrics, is not complete.
I The completions are spaces of infinite sequences

x = (x1, x2, . . . ), x

i

2 R
with appropriate convergence properties:

I Completion of the (1) norm: the space `1 of infinite
sequences x satisfying

1X

i=1

|x
i

| < 1

I Completion of (2)-norm: the space `2 of all x with
1X

i=1

|x
i

|2 < 1

I For (1)-norm, the space `1

sup{|x |
i

, i = 1, 2, . . . } < 1







Groups of isometries

I If (X , d) is a metric space, the collection of all
surjective isometries f : (X , d) ! (X , d) forms a
group

I Operations: Composition, inversion.
I We will compute some of these groups.



I Group:
I A set G

I An element e 2 G.
I A map G ⇥ G ! G (group multiplication):

(g, h) ! gh

I A map G ! G (inversion):

g ! g

�1

I Satisfying:
I For all g1, g2, g3 2 G, (g1g2)g3 = g1(g2g3)
I For all g 2 G, eg = ge = g

I For all g 2 G, gg

�1 = g

�1
g = e



I Main example for us: groups of isometries.

I Let (X , d) be a metric space.

I Let I(X ) be the set of all surjective isometries
f : (X , d) ! (X , d).

I If f , g 2 I(X ), let fg = f � g, the composition of f and
g:

(f � g)(x) = f (g(x))

I If f 2 I(X ), let f

�1 be the usual inverse function. It
exists because f is both injective and surjective.

I Let e be the identity map id : X ! X .





I Check that I(X ) is a group:

I
f , g isometries =) f � g isometry.

I (f � g) � h = f � (g � h) holds for maps of spaces.

I
f 2 I(X ) =) inverse map f

�1 exists, and
f � f

�1 = f

�1 � f = id

by definition of inverse map.



I Any metric space has at least one isometry: id .

I In general, don’t expect to have any others

I Let’s look at Rn with any one of the (1), (2), or (1)
metrics.

I There are always infinitely many isometries:
Translations.

I Fix v 2 Rn. Define t

v

: Rn ! Rn, translation by v , by

t

v

(x) = x + v .





I
t

v

(x) is an isometry. If |x | is any norm on Rn, the
corresponding distance is

d(x , y) = |y � x |

I Therefore

d(t
v

(x), t
v

(y)) = |(y + v)� (x + v)| = |y � x | = d(x , y)

I Thus translations are isometries (for any distance
given by a norm).





I Are there any other isometries of R

n (in any of the
norms?)

I Can you think of one other that always exists?

I Concentrate on R2 (just to draw pictures)

I Fix a norm on R2. Suppose f : R2 ! R2 is an
isometry.

I Let g = t�f (0) � f , so g(x) = f (x)� f (0).

I Then g(0) = 0, that is, g fixes the origin, and

f = t

f (0) � g





I Conclusion: Every isometry f of Rn is a composition
f = t

v

� g, or
f (x) = g(x) + v ,

where g is an isometry fixing the origin.
I In practical terms:

To find all isometries of Rn

, enough to find all

isometries fixing the origin





I In the homework you’ll work out the group I0 for the
taxicab metric in R2. You’ll see it’s rather small.

I From this you’ll know all isometries of R2 with the
taxicab distance.

I Next we’ll work out the group I0 for the usual
Euclidean distance in R2.



I Observe that the set of all isometries fixing the origin
is a sub-group of the group I(Rn).

I We see two subgroups of I(Rn):

I T , the subgroup of translations.

I I0, the subgroup fixing the origin

I All isometries are obtained by combining these two
types (in a very precise way).



I In the homework you’ll work out the group I0 for the
taxicab metric in R2. You’ll see it’s rather small.

I From this you’ll know all isometries of R2 with the
taxicab distance.

I Next we’ll work out the group I0 for the usual
Euclidean distance in R2.


