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Another Example of a Metric Space
> nge’s a variation on example of unit sphere

S2 = {1, %, X2) | X2+ 32 + X2 =1} c@
» and of the intrinsic distance (great circle arc) V

di(x,y) =cos™'(x - y) Q°

Figure: Intrinsic Distance on S?
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Minkowski Space
» Definition (Minkowsi Space)
Minkowski Space i ith the MinKowski inner product,
defined as follows: if x, y € R3, then

———

£
. . Shaw .
» The Minkowski Length of a vector x € R® is

X@Y = X1Y1 + X2)2\I X3)3.
q‘:—\’

x|m = (x 0 x)2

» Note that | x|y can be positive, zero, or imaginary,
since x ¢ x can be any real number.






» The level sets of the Minkowski squared norm x o x: ¢ f»(*ﬂ"ﬁ)

Figure: Level Sets of Minkowski Squared Norm

=0 ifx e cone,
» Xxox =14 —1 if x € hyperboloid of two sheets .
1 if x € hyperboloid of one sheet
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Hyperbolic space

v

The tangent vector x'(t) to a curve x(t) lying in the
hyperboloid of two sheets has positive Minkowski
length:

Differentiate the equation x(t) ¢ x(t) = —1, get

v

2x(t)oX'(t) =0
~—

So x/(t) is Minkowski ort o x(1).
A non-zero vector Minkowski orthogonal to a negative

vector is positive.
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» Let
X ={(x1,%, %) €ER® | X2+ x5 — x5 = -1, x3 > 0}

be the top half of the hyperboloid of one sheet.

» Can define the length of a pleceW|se smooth curve
v:[0,1] = X:

/t—/ ) o /(1)) alt

» If x, y € X can define their intrinsic distance

di(x,y) = inf{L(¥) | v p-wise smooth curveM




» Turns out that M (‘C)

l di(x,y) = cosh™'(x o y) - e {"4 ,e"‘.&
» Compare with formula for sphere: 7
» To make formula plausible, compute the length of the @

curve

=(50,vV1+1£), 0<t<x)
from (0,0,1) to (x1,0, /1 + x2).



» Compute:

'}/(t) = (1707 \/1—%——1‘2 )7
and 1
0/ o7 (1)} = =
» So

/ mdt = sinh™"(x1) = cosh™"(y/1 + x?)

(by making the substitution t = sinh(u), df = cosh(u))
» The answer is the same as

cosh™"(y/1 + x2) = cosh™ ' (x o y)









Hyperbolic Geometry

v

The geometry of the space X just defined is called
Hyperbali netry

ake any formula in spherical geometry in%
trigonometric functions.

rife down the same formula changing trigonometric
functions to hyperbolic functions.

For example, cos — cosh, tan — tanh, etc.

Then you have the correct formula in Hyperbolic /
Geometry.

v
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Back to Metric Space Theory (
P

» (X, d) will denote a metric space.
» Recall the concept of convergence p # Bty

» Let {x,} be a sequence in (X, d).«

3. |We say that {x,} is a Cauchy sequence iff for all e > 0
there exists N € N so that d(xm, Xp) < eforall <
nsn> N e
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Completeness

ST = A 9=?
=
L

(X, d) is called complete if every Cauchy sequence
converges. ‘ - p

» (R, d) is complete, where d is any one of
d1); d(2); A(ox)

» Given the first statement (completeness of R)
how would you prove the second?

is complete.
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» (Q, usual d) is not compl@
S

» (Q,dp)isn e.

» Let R® = {x = (X1, %X2,..., Xn,... )| €R
and 3N(x) such that x; = 0 for i > N(x)}.
(R, d) is not complete, d any one of d(1), dz), d(sc)-

e

~n 0
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» Any metric space (X, d) has a completion (X, Ef).J

Means

. (X,d)isa complete metric space.
2 (X d) is a dense subspace of (X, d).

_d) means that every x € X is the
I|m|t of some sequence {x,} in X.
2o SEREET

» Construct (X, d) as equivalence classes of Cauchy
sequences in (X,d) T —

» Model: Construction of R from Q by Cauchy

sequences. ——— >






» If (X, d) is complete, then it is its own completion.

» If dy is the usual distance in Q, then (Q, d) = (R, dk),
where dy is the usual distance on R
» Fix a prime number p.

The completion (Z, d,) of (Z, d,) is called the ring of
p-adic integers

The completion (Q, d,) of (Q, d,) is called the field of
p-adic numbers.



Equivalence Relations: \
three equivalent formulations

» X set, R C X x X equivalence relation.

» X set, partition of X into subsets E,, y € Y

» f: X — Y surjective
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Completion of a metric space

» Let (X, d) be a metric space.
et C(X) denote the set of all Cauchy sequences in
(X,d):
» Define an equivalence relation on C(X) by ’;

{xn} ~ {yn} < lim{d(Xp, yn)} = 0.

e =T

» Denote by Hx,, the equivalence class of {x,}
Let X = ~bethe set of equivalence classes.

» ‘Défine the-distance between equivalence classes by

@@ = lim{d (s, y») 0{(‘”7\/7~} -y
o AG. 3

Yoo g, —-ﬁ’fﬂ‘l
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Identify (X, d) with a subspace of (X, d) by

—_— ~—

€ X}» constant sequence {x, x, x,...}

—

Check that everything is well defined.
Check that (X, d) is dense in (X, d).
This is a construction of the completion.
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Maps between metric spaces

» Let (X,d) and (Y, d’) be metric spaces.
» Letf: X =Y.

> Let x € X. The map f is at@iff for all

e > 0 there exists a 6 > 0 so that for all y € X, if

d(x,y) < d,then d'(f(x),f(y)) <e 4
33

» The map f is continuous iff it is continuous at all
x e X.

Y

Explicitly, f is continuous iff for all x € X and ¢ > 0
there exists a (= 0(x, €)) jso that d'(f(x), f(y)) < e for
all y € X with é{xr :



» The map f is uniformly continuous iff for aII e>0

there exists a §(= 9(2)) so that d'(f <@for all
x,y € X with w N‘-*—-—"'"'"
I =

r\{The map f is called Lipschitz iff there exists a
c

onstant C > 0 so that
A1), 1)) < FH(x.y)

holds for all x y/e X.
L/Tm is called a Lipschitz constant for f.

» If a smallest Lipschitz constant exists, then it is called
Lipschitz constant for f.
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» Source of Lipschitz maps:

Differentiable maps with bounded derivative.
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