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Another Example of a Metric Space
I Here’s a variation on example of unit sphere

S2 = {(x1, x2, x2) | x2
1 + x2

2 + x2
3 = 1} ⇢ R3

I and of the intrinsic distance (great circle arc)

di(x , y) = cos�1(x · y)

Figure: Intrinsic Distance on S2





Minkowski Space

I Definition (Minkowsi Space)
Minkowski Space is R3 with the Minkowski inner product,
defined as follows: if x , y 2 R3, then

x ⇧ y = x1y1 + x2y2 � x3y3.

I The Minkowski Length of a vector x 2 R3 is

|x |M = (x ⇧ x)
1
2

I Note that |x |M can be positive, zero, or imaginary,
since x ⇧ x can be any real number.





I The level sets of the Minkowski squared norm x ⇧ x :

��������

Figure: Level Sets of Minkowski Squared Norm

I x ⇧ x =

8
><

>:

= 0 if x 2 cone,
�1 if x 2 hyperboloid of two sheets .

1 if x 2 hyperboloid of one sheet





Hyperbolic space

I The tangent vector x 0(t) to a curve x(t) lying in the
hyperboloid of two sheets has positive Minkowski
length:

I Differentiate the equation x(t) ⇧ x(t) = �1, get

2x(t) ⇧ x 0(t) = 0

I So x 0(t) is Minkowski orthogonal to x(t).
I A non-zero vector Minkowski orthogonal to a negative

vector is positive.





I Let

X = {(x1, x2, x3) 2 R3 | x2
1 + x2

2 � x2
3 = �1, x3 > 0}

be the top half of the hyperboloid of one sheet.
I Can define the length of a piecewise smooth curve

� : [0, 1] ! X :

L(�) =
Z 1

0
|�0(t)|M dt =

Z 1

0
(�0(t) ⇧ �0(t))

1
2 dt

I If x , y 2 X can define their intrinsic distance

di(x , y) = inf{L(�) | � p-wise smooth curve from x to y}



I Turns out that

di(x , y) = cosh�1(x ⇧ y)

I Compare with formula for sphere:

di(x , y) = cos�1(x · y)

I To make formula plausible, compute the length of the
curve

�(t) = (t , 0,
p

1 + t2 ), 0  t  x1)

from (0, 0, 1) to (x1, 0,
p

1 + x2
1 ).



I Compute:

�0(t) = (1, 0,
tp

1 + t2
),

and
(�0(t) ⇧ �0(t))

1
2 =

1p
1 + t2

I So

L(�) =
Z x1

0

1p
1 + t2

dt = sinh�1(x1) = cosh�1(
q

1 + x2
1 )

(by making the substitution t = sinh(u), dt = cosh(u))
I The answer is the same as

cosh�1(
q

1 + x2
1 ) = cosh�1(x ⇧ y)







Hyperbolic Geometry

I The geometry of the space X just defined is called
Hyperbolic Geometry

I Take any formula in spherical geometry involving
trigonometric functions.

I Write down the same formula changing trigonometric
functions to hyperbolic functions.

I For example, cos ! cosh, tan ! tanh, etc.
I Then you have the correct formula in Hyperbolic

Geometry.





Back to Metric Space Theory

I (X , d) will denote a metric space.
I Recall the concept of convergence

I Let {xn} be a sequence in (X , d).

1. Let x 2 X . We say lim{xn} = x iff for all ✏ > 0 there is
an N(= N(✏)) 2 N so that d(x , xn) < ✏ for all n > N.

2. We say that {xn} converges iff there exists x 2 X so
that lim{xn} = x .

3. We say that {xn} is a Cauchy sequence iff for all ✏ > 0
there exists N 2 N so that d(xm, xn) < ✏ for all
m, n > N.







Completeness

I (X , d) is called complete if every Cauchy sequence
converges.

I (R, usual d) is complete.

I (Rn, d) is complete, where d is any one of
d(1), d(2), d(1)

I Given the first statement (completeness of R)
how would you prove the second?







I (Q, usual d) is not complete.

I (Q, dp) is not complete.

I Let R1 = {x = (x1, x2, . . . , xn, . . . )|xi 2 R

and 9N(x) such that xi = 0 for i > N(x)}.

(R1, d) is not complete, d any one of d(1), d(2), d(1).











I Any metric space (X , d) has a completion (X̄ , d̄).

I Means:
1. (X̄ , d̄) is a complete metric space.
2. (X , d) is a dense subspace of (X̄ , d̄).

I (X , d) dense in (X̄ , d̄) means that every x̄ 2 X̄ is the
limit of some sequence {xn} in X .

I Construct (X̄ , d̄) as equivalence classes of Cauchy
sequences in (X , d)

I Model: Construction of R from Q by Cauchy
sequences.





I If (X , d) is complete, then it is its own completion.

I If dQ is the usual distance in Q, then (Q̄, d̄) = (R, dR),
where dR is the usual distance on R

I Fix a prime number p.

The completion (Z̄, d̄p) of (Z, dp) is called the ring of
p-adic integers

The completion (Q̄, d̄p) of (Q, dp) is called the field of
p-adic numbers.



Equivalence Relations:
three equivalent formulations

I X set, R ⇢ X ⇥ X equivalence relation.

I X set, partition of X into subsets Ey , y 2 Y

I f : X ! Y surjective





Completion of a metric space

I Let (X , d) be a metric space.
I Let C(X ) denote the set of all Cauchy sequences in

(X , d).
I Define an equivalence relation on C(X ) by

{xn} ⇠ {yn} () lim{d(xn, yn)} = 0.

I Denote by [{xn}] the equivalence class of {xn}
I Let X̄ = C(X )/ ⇠ be the set of equivalence classes.
I Define the distance between equivalence classes by

d̄([{xn}], [{yn}]) = lim{d(xn, yn)}



I Identify (X , d) with a subspace of (X̄ , d̄) by

x 2 X ! constant sequence {x , x , x , . . . }

I Check that everything is well defined.
I Check that (X , d) is dense in (X̄ , d̄).
I This is a construction of the completion.















Maps between metric spaces

I Let (X , d) and (Y , d 0) be metric spaces.
I Let f : X ! Y .

I Let x 2 X . The map f is continuous at x iff for all
✏ > 0 there exists a � > 0 so that for all y 2 X , if
d(x , y) < �, then d 0(f (x), f (y)) < ✏.

I The map f is continuous iff it is continuous at all
x 2 X .

Explicitly, f is continuous iff for all x 2 X and ✏ > 0
there exists a �(= �(x , ✏)) so that d 0(f (x), f (y)) < ✏ for
all y 2 X with d(x , y) < �.



I The map f is uniformly continuous iff for all ✏ > 0
there exists a �(= �(✏)) so that d 0(f (x), f (y)) < ✏ for all
x , y 2 X with d(x , y) < �

I The map f is called Lipschitz iff there exists a
constant C > 0 so that

d 0(f (x), f (y))  Cd(x , y)

holds for all x , y 2 X .
I The constant C is called a Lipschitz constant for f .
I If a smallest Lipschitz constant exists, then it is called

the Lipschitz constant for f .













I Source of Lipschitz maps:

Differentiable maps with bounded derivative.






