Introduction to Algebraic and Geometric Topology Week 13

Domingo Toledo

University of Utah

Fall 2017

Recall: Defined Smooth Surface

Examples

- ▶ Open subset of R²
- $S^2 \subset \mathbb{R}^3$
- ▶ If $U \subset \mathbb{R}^3$ open, $f: U \to \mathbb{R}$ smooth, $S = \{ f = 0 \}$, and

then S is a smooth surface.

Some identification spaces: $\mathbb{R}^2/\mathbb{Z}^2$ (See homework 6)

Examples of non-smooth surfaces

Figure: The Whitney Umbrella

$$f(x,y,z) = \underbrace{x^2 - y^2 z}_{\text{then }} \text{Then } \nabla f = (2x, -2yz, y^2) = (0,0,0)$$

Smooth maps of smooth surfaces

S a smooth surface with atlas $\{U_{\alpha}, \phi_{\alpha}\}$. Then

Example

 $S = \{f(x, y, z) = 0\} \subset \mathbb{R}^3$, where $\nabla f \neq 0$ on S. Then the inclusion map $\iota : S \to \mathbb{R}^3$ is smooth.

▶ $I \subset \mathbb{R}$ an interval. Then $\gamma : I \to S$ is smooth \iff γ is continuous and

$$\forall \alpha, \ \phi_{\alpha} \circ \gamma : (I \cap \gamma^{-1}(U_{\alpha})) \to \phi_{\alpha}(U_{\alpha})$$

is smooth.

▶ Alternative definition: $\gamma: I \rightarrow S$ smooth \iff

 γ is continuous and I can be covered by intervals $\{I_{\beta}\}$ so that

- 1. For each β there is an $\alpha(\beta)$ with $\gamma(I_{\beta}) \subset U_{\alpha(\beta)}$.
- 2. $\forall \beta, \ \phi_{\alpha(\beta)} \circ \gamma : I_{\beta} \to \phi_{\alpha(\beta)}(U_{\alpha(\beta)})$ is smooth.

Example

Let $S = \{f(x, y, z) = 0\} \subset \mathbb{R}^3$, where $\nabla f \neq 0$ on S. Then a curve $\gamma : [a, b] \xrightarrow{\sim} S$ is smooth by the definition just given $\iff \iota \circ \gamma : [a, b] \to \mathbb{R}^3$ is smooth.

- ▶ S, T smooth surfaces with atlas $\{U_{\alpha}, \phi_{\alpha}\}, \{V_{\beta}, \psi_{\beta}\}$ respectively.
- $f: S \to T$ continuous.
- ▶ Refine the atlas on *S* as follows:
 - 1. Cover *S* by the connected components of the sets $U_{\alpha} \cap f^{-1}(V_{\beta})$ (for $U_{\alpha} \cap f^{-1}(V_{\beta}) \neq \emptyset$)
 - 2. Call these sets W_{γ} . By definition, each $W_{\gamma} \subset U_{\alpha(\gamma)}$.
- 3. Let $\eta_{\gamma} = \phi_{\alpha(\gamma)}|_{\mathcal{W}_{\gamma}} : \mathcal{W}_{\gamma} \to \mathbb{R}^2$.
- ► This atlas $\{W_{\gamma}, \eta_{\gamma}\}$ has the property that for each γ there is a $\beta(\gamma)$ so that $f(W_{\gamma}) \subset V_{\beta(\gamma)}$
- f is smooth \iff for all γ the compositions

$$\psi_{\beta(\gamma)} \circ f \circ \eta_{\gamma}^{-1} : \eta_{\gamma}(W_{\gamma}) \to \psi_{\beta(\gamma)}(V_{\beta(\gamma)})$$

are smooth.

- ► Simpler way: S, T smooth surfaces, $f: S \rightarrow T$ continuous.
- Assume have atlas $\{U_{\alpha}, \phi_{\alpha}\}, \{V_{\beta}, \psi_{\beta}\}$ on S, T respectively so that for each α there is a $\beta(\alpha)$ so that $f(U_{\alpha}) \subset V_{\beta(\alpha)}$.
- ▶ Then f is smooth \iff

$$\psi_{\beta(\alpha)} \circ f \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha}) \to \psi_{\beta(\alpha)}(V_{\beta(\alpha)})$$

are smooth.

Theorem

Let S be a smooth surface.

- 1. S is locally piecewise smoothly path connected.
- 2. If S is connected, then it is piecewise smoothly path connected.

Surfaces in \mathbb{R}^3 as metric spaces

- ▶ $S \subset \mathbb{R}^3$ a smooth surface.
- $\sim \gamma: [a,b] \rightarrow S$ a piecewise smooth curve.
- ▶ By composition, $\iota \circ \gamma : [a, b] \to \mathbb{R}^3$
- Write simply γ for $\iota \circ \gamma$
- ▶ The *length of* γ is by definition

$$\widehat{L(\gamma)} = \int_{a}^{b} |\widehat{\gamma'(t)}| dt$$

- ▶ The vector $\gamma'(t)$ is the tangent vector to γ in \mathbb{R}^3
- Note that γ' is actually tangent to S.
 |γ'| = (γ' · γ')^{1/2} is the length of γ' in ℝ³.

Tament vector to f =0 of f (01=0 (Ppf #0) S-R3 (f=0), Pf to When too The tangent plane 10 5 at P is theplane wie (x-p). P,f =0 (I to gradent fate) Exi fixque property

Office to the stand 72 (2-2) +46 (9-4) +2,(2-2,) =0 TI [a,b] - > pleceus. 40 [(8) = 5 18/(4) our defore d (9,8) p, 8 c5 = inf { (): 8 (0) = 9 } Ce, 6 J

Need 5 path connected
preceives smoothly Remai pf of Conn, los path com loc pis, path con, come => P.S. poth comspende IP? 2 ball in Res 115 poth con => sorfaces ar. loc acs. pet com Summery : if S 1'S Conners path comm =d(p,q) is defined (+p)

caked the intensix metric

- ► Suppose *S* is connected.
- ▶ Then it is piecewise smoothly path connected
- ightharpoonup Define the *intrinsic metric d*_S on S by

$$d_{\mathcal{S}}(p,q) = \inf\{L(\gamma) \mid \gamma : [0,1] \to \mathcal{S} \text{ p.s.}, \gamma(0) = p, \gamma(1) = q\}$$

- ▶ Have checked d_S is a metric.
- $d_S(p,q) > 0$ if $p \neq q$ follows from

$$d_S(p,q) \geq d_E(p,q)$$

where d_E is the Euclidean distance in \mathbb{R}^3 .

- ▶ When is $d_S(p,q) = d_E(p,q)$?
- ▶ When can inf be replaced by min?
- When are there length minimizing curves?
- ▶ Length minimizers on S^2 ?

HWR - Monday

0,1) x (0,1) 0/401 [(x,y1] =(x,y) 0/401

$$\begin{array}{cccc}
(0,0) & = & (5,0), (5,0) \\
(0,9) & = & (5,9), (1,9) \\
(0,0) & = & (0,0)(0,1)(1,0), (1,0)
\end{array}$$

Atlas for T 1) defined open sets in R² O E < x < 1-E E < y < 1-E E < y < 1-E

(3) e
1/-2 < 1/2 = 2 1/2+E < 9 < 3/2-E

Last time
$$\int_{P} S = (\nabla_{p} f) + \int_{P} \int$$

$$8: [0, 1] \Rightarrow \int p^{ieceus} smooth$$

$$p(s) = \int p^{i}(y) dt$$

$$8'(y) = 0$$

$$p(s) = 0$$

$$p(s)$$

Assume St is Connected

defined intriser dist Ff P, 26.5 $d_{S}(p,q) = im \{ L(q) : d: Eq, 53-45 \}$ $f(g) = im \{ L(q) : d: Eq,$

Geods Strught lines

Brocked Strught lines

And the service of the

Geodesics

- ► Temporary definition: length minimizing curves.
- ▶ Better: *locally* length minimizing (see S²)
- Another issue: parametrized vs. unparametrized curves.
- ▶ The definition of length uses a parametrization:

$$L(\gamma) = \int_a^b |\gamma'(t)| dt = \int_\gamma ds$$

- ▶ But the value of $L(\gamma)$ is independent of the parametrization:
- ► This means: if $\alpha : [c, d] \rightarrow [a, b]$ is an increasing function (reparametrization),

$$\int_{a}^{d} \left| \frac{d(\gamma(\alpha(t)))}{dt} \right| dt = \int_{a}^{b} \left| \frac{d\gamma}{dt} \right| dt$$

- $\gamma \sim \gamma \circ \alpha$ is an equivalence relation on curves.
- ► Equivalence classes called *unparametrized curves*.

- $L(\gamma)$ depends only on the unparametrized curve γ
- Convenient to choose a distinguished representative called *parametrization by arc-length*
 - Parameter denoted s, defined loosely as

$$s = \int_{\gamma} ds$$

More precisely

$$s(t) = \int_a^t |rac{d\gamma}{d au}|d au$$

- \triangleright s is an increasing function of t, hence invertible, inverse function t(s).
- ▶ Reparametrize $\gamma(t)$, $a \le t \le b$ as

$$\gamma(t(s)), \ 0 \leq s \leq L(\gamma)$$

▶ Call the reparametrized curve $\gamma(t(s))$ simply $\gamma(s)$.

- ► Convention: *s* always means arclength.
- ▶ γ parametrized by arclength $\iff |\frac{d\gamma}{ds}| \equiv 1$.
- Convention:

$$\gamma' = rac{d\gamma}{ds}, \ \ \gamma \cdot = rac{d\gamma}{dt}$$

First Variation Formula for Arc-Length

- $S \subset \mathbb{R}^3$ a smooth surface (given by $f = 0, \nabla F \neq 0$)
- $\gamma: [0, L_0] \to S$ a smooth curve, parametrized by arclength, of length L_0
- endpoints $P = \gamma(0)$ and $Q = \gamma(1)$.
- ▶ Want necessary condition for γ to be shortest smooth curve on S from P to Q

- ▶ Calculus: consider *variations of* γ ,
- Meaning smooth maps

$$ilde{\gamma}: [0, L_0] imes (-\epsilon, \epsilon) o \mathcal{S} ext{ with } ilde{\gamma}(s, 0) = \gamma(s) ext{ for all } s \in [0, L_0].$$

with s being arclength on $\tilde{\gamma}(s,0)$ but not necessarily on $\tilde{\gamma}(s,t)$ for $t \neq 0$.

▶ If, in addition, we have that

$$\tilde{\gamma}(0,t) = P, \ \tilde{\gamma}(L_0,t) = Q \text{ for all } t \in (-\epsilon,\epsilon),$$

we say that $\tilde{\gamma}$ is a variation of γ preserving the endpoints.

Figure: Variation with Fixed Endpoints

So 135 (s,t) ds

- Necessay condition for a minimum:
- Then $\frac{dL}{dt}(0) = 0$ for all variations $\tilde{\gamma}$ of γ with fixed endpoints P, Q.
- Let's compute $\frac{dL}{dt}(0)$ for arbitrary variations, then specialize to variations with fixed endpoints.

assome 8 (5,0) = 7 (5) 5 arky M t = 0 ▶ Begin with the formula for L(t)

$$L(t) = \int_0^{L_0} \left(\widetilde{\gamma}_s(s,t) \cdot \widetilde{\gamma}_s(s,t) \right)^{1/2} ds$$

► Differentiate under the integral sign

$$\frac{dL}{dt} = \int_0^{L_0} \frac{1}{2} (\tilde{\gamma}_s(s,t) \tilde{\gamma}_s(s,t))^{-1/2} (2 \tilde{\gamma}_{st}(s,t) \cdot \tilde{\gamma}_s(s,t)) ds.$$

▶ Evaluate at t = 0 using that $\tilde{\gamma}_s(s, 0) \cdot \tilde{\gamma}_s(s, 0) = 1$

$$\frac{dL}{dt}(0) = \int_0^{L_0} \tilde{\gamma}_{st}(s,0) \cdot \tilde{\gamma}_s(s,0) ds.$$

Integrate by parts, using equality of mixed partials and the formula

$$(\tilde{\gamma}_t(s,0)\cdot\tilde{\gamma}_s(s,0))_s = \tilde{\gamma}_{ts}(s,0)\cdot\tilde{\gamma}_s(s,0) + \tilde{\gamma}_t(s,0)\cdot\tilde{\gamma}_{ss}(s,0)$$

▶ Get

$$\frac{dL}{dt}(0) = (\tilde{\gamma}_t(s,0) \cdot \tilde{\gamma}_s(s,0))|_0^{L_0} - \int_0^{L_0} \tilde{\gamma}_t(s,0) \cdot \tilde{\gamma}_{ss}(s,0) ds$$

$$Chiha$$

▶ Define a vector field V(s) along γ by

$$V(s) = \tilde{\gamma}_t(s, 0).$$

- ► This is called the *variation vector field*.
- V(s) is the velocity vector of the curve $t \to \tilde{\gamma}(s,t)$ at t=0.
- ▶ V(s) tells us the velocity at which $\gamma(s)$ initially moves under the variation.
- If the variation preserves endpoints, then V(0) = 0 and $V(L_0) = 0$,

Figure: Variation Vector Field

We can now write the final formula

$$\frac{dL}{dt}(0) = \underbrace{V(s) \cdot \gamma'(s)|_0^{L_0}}_{0} - \int_0^{L_0} \underbrace{V(s) \cdot \gamma''(s)^T}_{0} ds.$$

- ► Since V(s) is tangent to S, we replaced $\gamma''(s)$ by its tangential component γ''^T
- Necessary condition for minimizer: $\frac{dL}{dt}(0) = 0$ for all variations $\tilde{\gamma}$ of γ with fixed endpoints.
- equivalently

$$\int_0^{L_0} V(s) \cdot \gamma''^T = 0 \; \forall \; V \text{ along } \gamma \text{ with } v(0) = V(L_0) = 0$$

- Finally this means $\gamma''^T \equiv 0$.
- ► Reason: use "bump functions"

Definition

Let $\gamma:(a,b)\to S$ be a smooth curve and $V:(a,b)\to \mathbb{R}^3$ a smooth vector field along γ , meaning that V is a smooth map and for all $s\in(a,b),\ V(s)\in T_{\gamma(s)}S$, the tangent plane to S at $\gamma(s)$.

- 1. The tangential component $V'(s)^T$ is called the *covariant derivative* of V and is denoted DV/Ds.
- 2. γ is a *geodesic* if and only if $D\gamma'/Ds = 0$ for all $s \in (a, b)$.