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Recall: Defined Smooth Surface

Examples

I Open subset of R2

I S2 ⇢ R3

I If U ⇢ R3 open, f : U ! R smooth, S = {f = 0}, and

8p 2 S, rf (p) 6= 0

then S is a smooth surface.

I Some identification spaces: R2/Z2

(See homework 6)









Examples of non-smooth surfaces

Figure: The Surface xyz = 0



Figure: The Cone x2 + y2 � z2 = 0



Figure: The Whitney Umbrella

f (x , y , z) = x2 � y2z. Then rf = (2x ,�2yz, y2) = (0, 0, 0)





Smooth maps of smooth surfaces

S a smooth surface with atlas {U↵,�↵}. Then

I f : S ! Rn smooth ()

8↵, f � ��1
↵ : �↵(U↵) ! Rn

is smooth.



Example
S = {f (x , y , z) = 0} ⇢ R3, where rf 6= 0 on S. Then the
inclusion map ◆ : S ! R3 is smooth.



I I ⇢ R an interval. Then � : I ! S is smooth ()

� is continuous and

8↵, �↵ � � : (I \ ��1(U↵)) ! �↵(U↵)

is smooth.



I Alternative definition: � : I ! S smooth ()

� is continuous and I can be covered by intervals {I�}
so that

1. For each � there is an ↵(�) with �(I�) ⇢ U↵(�).

2. 8�, �↵(�) � � : I� ! �↵(�)(U↵(�)) is smooth.



Example
Let S = {f (x , y , z) = 0} ⇢ R3, where rf 6= 0 on S. Then a
curve � : [a, b] ! S is smooth by the definition just given
() ◆ � � : [a, b] ! R3 is smooth.





I S,T smooth surfaces with atlas {U↵,�↵}, {V�, �}
respectively.

I f : S ! T continuous.
I Refine the atlas on S as follows:

1. Cover S by the connected components of the sets
U↵ \ f�1(V�) (for U↵ \ f�1(V�) 6= ;)

2. Call these sets W� . By definition, each W� ⇢ U↵(�).
3. Let ⌘� = �↵(�)|W� : W� ! R2.

I This atlas {W�, ⌘�} has the property that for each �
there is a �(�) so that f (W�) ⇢ V�(�)

I f is smooth () for all � the compositions

 �(�) � f � ⌘�1
� : ⌘�(W�) !  �(�)(V�(�))

are smooth.





I Simpler way: S,T smooth surfaces, f : S ! T
continuous.

I Assume have atlas {U↵,�↵}, {V�, �} on S,T
respectively so that for each ↵ there is a �(↵) so that
f (U↵) ⇢ V�(↵).

I Then f is smooth ()

 �(↵) � f � ��1
↵ : �↵(U↵) !  �(↵)(V�(↵))

are smooth.



Theorem
Let S be a smooth surface.

1. S is locally piecewise smoothly path connected.
2. If S is connected, then it is piecewise smoothly path

connected.



Surfaces in R3 as metric spaces

I S ⇢ R3 a smooth surface.
I � : [a, b] ! S a piecewise smooth curve.
I By composition, ◆ � � : [a, b] ! R3

I Write simply � for ◆ � �
I The length of � is by definition

L(�) =
Z b

a
|�0(t)|dt

I The vector �0(t) is the tangent vector to � in R3

I Note that �0 is actually tangent to S.
I |�0| = (�0 · �0)1/2 is the length of �0 in R3.









I Suppose S is connected.
I Then it is piecewise smoothly path connected
I Define the intrinsic metric dS on S by

dS(p, q) = inf{L(�) | � : [0, 1] ! S p.s., �(0) = p, �(1) = q}



I Have checked dS is a metric.
I dS(p, q) > 0 if p 6= q follows from

dS(p, q) � dE(p, q)

where dE is the Euclidean distance in R3.
I When is dS(p, q) = dE(p, q)?
I When can inf be replaced by min?
I When are there length minimizing curves?
I Length minimizers on S2?



















Geodesics

I Temporary definition: length minimizing curves.
I Better: locally length minimizing (see S2)
I Another issue: parametrized vs. unparametrized

curves.
I The definition of length uses a parametrization:

L(�) =
Z b

a
|�0(t)|dt =

Z

�

ds



I But the value of L(�) is independent of the
parametrization:

I This means: if ↵ : [c, d ] ! [a, b] is an increasing
function (reparametrization),

Z d

c
|d(�(↵(t))

dt
|dt =

Z b

a
|d�
dt

|dt

I � ⇠ � � ↵ is an equivalence relation on curves.
I Equivalence classes called unparametrized curves.



I L(�) depends only on the unparametrized curve �
I Convenient to choose a distinguished representative

called parametrization by arc-length
I Parameter denoted s, defined loosely as

s =

Z

�

ds



I More precisely

s(t) =
Z t

a
|d�
d⌧

|d⌧

I s is an increasing function of t , hence invertible,
inverse function t(s).

I Reparametrize �(t), a  t  b as

�(t(s)), 0  s  L(�)
I Call the reparametrized curve �(t(s)) simply �(s).



I Convention: s always means arclength.
I � parametrized by arclength

() |d�
ds | ⌘ 1.

I Convention:
�0 =

d�
ds

, �. =
d�
dt



First Variation Formula for Arc-Length

I S ⇢ R3 a smooth surface (given by f = 0,rF 6= 0)
I � : [0, L0] ! S a smooth curve, parametrized by

arclength, of length L0

I endpoints P = �(0) and Q = �(1).
I Want necessary condition for � to be shortest smooth

curve on S from P to Q



I Calculus: consider variations of �,
I Meaning smooth maps

�̃ : [0, L0]⇥(�✏, ✏) ! S with �̃(s, 0) = �(s) for all s 2 [0, L0].

with s being arclength on �̃(s, 0) but not necessarily
on �̃(s, t) for t 6= 0.



Figure: Variation with Moving Endpoints



I If, in addition, we have that

�̃(0, t) = P, �̃(L0, t) = Q for all t 2 (�✏, ✏),

we say that �̃ is a variation of � preserving the
endpoints.



Figure: Variation with Fixed Endpoints



I Necessay condition for a minimum:
I Let L(t) =

R L0
0 |d �̃

ds | ds.
I Then dL

dt (0) = 0 for all variations �̃ of � with fixed
endpoints P,Q.

I Let’s compute dL
dt (0) for arbitrary variations, then

specialize to variations with fixed endpoints.



I Begin with the formula for L(t)

L(t) =
Z L0

0
(�̃s(s, t) · �̃s(s, t))1/2 ds

I Differentiate under the integral sign

dL
dt

=

Z L0

0

1
2
(�̃s(s, t)·�̃s(s, t))�1/2(2 �̃st(s, t)·�̃s(s, t)) ds.

I Evaluate at t = 0 using that �̃s(s, 0) · �̃s(s, 0) = 1

dL
dt

(0) =
Z L0

0
�̃st(s, 0) · �̃s(s, 0) ds.



I Integrate by parts, using equality of mixed partials
and the formula

(�̃t(s, 0)·�̃s(s, 0))s = �̃ts(s, 0)·�̃s(s, 0) + �̃t(s, 0)·�̃ss(s, 0)

I Get

dL
dt

(0) = (�̃t(s, 0)·�̃s(s, 0))|L0
0 �

Z L0

0
�̃t(s, 0)·�̃ss(s, 0) ds



I Define a vector field V (s) along � by

V (s) = �̃t(s, 0).

I This is called the variation vector field.
I V (s) is the velocity vector of the curve t ! �̃(s, t) at

t = 0.
I V (s) tells us the velocity at which �(s) initially moves

under the variation.
I If the variation preserves endpoints, then V (0) = 0

and V (L0) = 0,



Figure: Variation Vector Field



I We can now write the final formula

dL
dt

(0) = V (s) · �0(s)|L0
0 �

Z L0

0
V (s) · �00(s)T ds.

I Since V (s) is tangent to S, we replaced �00(s) by its
tangential component �00T

I Necessary condition for minimizer: dL
dt (0) = 0 for all

variations �̃of � with fixed endpoints.
I equivalently

Z L0

0
V (s) · �00T = 0 8 V along � with v(0) = V (L0) = 0



I Finally this means �00T ⌘ 0.
I Reason: use “bump functions”



Definition
Let � : (a, b) ! S be a smooth curve and V : (a, b) ! R3

a smooth vector field along �, meaning that V is a smooth
map and for all s 2 (a, b), V (s) 2 T�(s)S, the tangent
plane to S at �(s).

1. The tangential component V 0(s)T is called the
covariant derivative of V and is denoted DV/Ds.

2. � is a geodesic if and only if D�0/Ds = 0 for all
s 2 (a, b).






