Introduction to Algebraic and Geometric Topology Week 12

Domingo Toledo

University of Utah

Fall 2017

Recall: Implicit Function Theorem in the Plane

Theorem

- ▶ Let $U \subset \mathbb{R}^2$ be a nbd of (0,0)
- ▶ Let $f: U \to \mathbb{R}$ be of class C^1 .

Then there exist
$$f(0,0) = 0$$

$$f(a_1b) = 0$$

$$f(a_1b) = 0$$

$$f(a_1b) = 0$$

- Then there exist
 - $\epsilon, \delta > 0$
 - a continuous function $\phi: (-\delta, \delta) \to (-\epsilon, \epsilon)$
- so that for all $(x, y) \in (-\delta, \delta) \times (-\epsilon, \epsilon)$

$$\{(x,\phi(x))\} = \{(x,y)| f(x,y) = 0\}$$

Picture

of
$$(t, q(b)) = 0$$
 if $dulb$
 $2f(t, q(b)) + 2f(t, q(b)) q(t) = 0$
 $2f(t) = -2f(t, q(b))$
 $4f(t, q(b))$

- Proved existence and continuity of φ
- Need to prove differentiability
- ▶ Start from: f/of class $C^1 \Longrightarrow$

$$f(x + \Delta x, y + \Delta y) - f(x, y) = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + E$$

The error
$$E$$
 satisfies
$$E = E(x, y, \Delta x, \Delta y) = \epsilon_x \Delta x + \epsilon_y \Delta y$$
 where $\epsilon_x, \epsilon_y \to 0$ as $\Delta x, \Delta y \to 0$

Evaluate at $(x, y) = (t) \phi(t)$ and $(\Delta x, \Delta y) = (\Delta t, \Delta \phi)$, where $\Delta \phi = \phi(t + \Delta t) - \phi(t)$:

where
$$f(t+\Delta t,\phi(t+\Delta t)) - f(t,\phi(t)) = \frac{\partial f}{\partial x}(t,\phi(t))\Delta t + \frac{\partial f}{\partial y}(t,\phi(t))\Delta \phi + E$$

$$E(t, \phi(t), \Delta t, \Delta \phi) = \epsilon_x \Delta t + \epsilon_y \Delta \phi,$$

where $\epsilon_x, \epsilon_y \to 0$ as $\Delta t \to 0$. (Note that the continuity of ϕ implies that $\Delta \phi \to 0$ as $\Delta t \to 0$)

By definition of ϕ each term on left hand side is 0, so we get

$$0 = (\frac{\partial f}{\partial x}(t,\phi(t)) + \epsilon_x)\Delta t + (\frac{\partial f}{\partial y}(t,\phi(t)) + \epsilon_y)\Delta \phi,$$
Solving:
$$\frac{\Delta \phi}{\Delta t} = -\frac{\frac{\partial f}{\partial x}(t,\phi(t)) + \epsilon_y}{\frac{\partial f}{\partial y}(t,\phi(t)) + \epsilon_y}\Delta t + 70$$
thus
$$\frac{\Delta \phi}{\Delta t} \rightarrow -\frac{\frac{\partial f}{\partial x}(t,\phi(t))}{\frac{\partial f}{\partial y}(t,\phi(t))} \text{ as } \Delta t \rightarrow 0,$$

proving that ϕ is differentiable and ϕ' has the expected value.

Example

Example
$$f(x,y) = x^2 + y^2 - 1$$

$$y = \sqrt{1-y^2}$$

Higher Dimensions

Theorem

- Rm + 1R n 1 1R2 T, 5 - FC x 55
- ▶ $U \subset \mathbb{R}^{m+n}$ open, $\mathbf{f} = (f_1, \dots f_n) : U \to \mathbb{R}^n$ smooth
- $ightharpoonup Z = \{ \mathbf{x} \in R^{m+n} \mid f(\mathbf{x}) = 0 \}, \ \mathbf{x}_0 = (x_1^0, \dots, x_{m+n}^0) \in Z$
- Suppose the matrix

$$\left(\frac{\partial f_i}{\partial x_j}(\mathbf{x}_0)\right)_{i=1,\dots,n,\ j=1,\dots,r}$$

is invertible.

▶ Then there exists a nbds N_1 of (x_1^0, \ldots, x_m^0) and N_2 of $(x_{m+1}^0, \ldots, x_{m+n})$ and a smooth map $\phi : N_1 \to N_2$ such that $N_1 \times N_2 \subset U$ and

$$Z \cap (N_1 \times N_2) = \{(x, \phi(x) \mid x \in N_1\}$$

Proof.

- For n = 1, same argument as before.
- Picture

For n > 1 more subtle topological invariants are needed.

Surfaces in \mathbb{R}^3

We will need mostly the following version (m = 2, n = 1)

Theorem

- $U \subset \mathbb{R}^3 \text{ open, } f: U \to \mathbb{R} \text{ smooth, } \mathbf{x}_0 \in U.$ $Z = \{\mathbf{x} \in U \mid f(\mathbf{x}) = 0\}, \mathbf{x}_0 \in Z$

 - Suppose the gradient $\nabla f(\mathbf{x}_0) \neq 0$
 - ► Then there is nbd N₂ in the space of one of the variables, a nbd N1 in the remaining variables so that
 - $ightharpoonup N_1 \times N_2$ is a nbd of \mathbf{x}_0
 - ▶ There is a smooth function $\phi: N_1 \to N_2$ so that

$$Z \cap (N_1 \times N_2) = \{(x, \phi(x) \mid x \in N_1\}$$

Proof.

By definition, the gradient $\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$.

If $\nabla f(\mathbf{x}_0) \neq 0$, then at least one of the partial derivatives does not vanish at \mathbf{x}_0 , say $\frac{\partial f}{\partial z}(\mathbf{x}_0) \neq 0$.

Now apply the previous version of the implicit function theorem for m = 2, n = 1.

Example

 $f(x, y, z) = x^2 + y^2 + z^2 - 1$ with zero set the unit sphere in \mathbb{R}^3 .

le shalor one vanille en en 2 f = 0 b beels the graph of a face

Topological Surface

- Hausdorff space S with a countable basis
- Every $x \in S$ has a nbd u homeomorphic to an open set in \mathbb{R}^2 ,
- So \exists open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ for some index set A,
- For each $\alpha \in A$ there exists a homeomorphism $\phi_{\alpha} : V_{\alpha} \to V_{\alpha}$, where $V_{\alpha} \subset \mathbb{R}^2$ is open.
- These homeomorphisms are called coordinate charts or simply charts.
- The collection of charts is called an atlas.

Smooth Surfaces

- ► A topological surface S.
- ► The atlas $\{U_{\alpha}, \phi_{\alpha}\}_{\alpha \in A}$ can be chosen so that
- Whenever $\dot{U}_{\alpha} \cap \dot{U}_{\beta} \neq \emptyset$,

=> & op ae al milette, Again, look at S^2 : diff-eomor phism Amouth comers Oxt, Ut, Ut Con 5 allower 6 chab. inseco pt : (k, 1/2) : White (279) : x2+g221 970

1-8122 × 12 (x+12 = 1, 420) {x+2-01, 27) (x) (1-x2-42) Cop cop puis

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Diff funcs

need Vectorspie

 $\frac{f(x+\Delta r)=f(x)}{\Delta x}$

F(x+Dy y+Dy)-f(xy)
= 2+ Ox+2+ Dy para
leaven (melon

Smooth functions

Definition

- *S* smooth surface, atlas $\{U_{\alpha}, \phi_{\alpha}\},$
- $f: S \to \mathbb{R}$ a function.
- f is *smooth* if and only if, for all α

$$f\circ\phi_{\alpha}^{-1}:\phi_{\alpha}(U_{\alpha})\to\mathbb{R}$$

is a smooth function.

Called the transition functions

An atlas for a smooth

Surface has to have

all transition function

Smooth

Papt 9Bs Goth Smooth

: Of are diffeomorphisms

Smooth, invertible, smooth

▶ This follows from smoothnes of all $\phi_{\alpha} \circ \phi_{\beta}^{-1}$

$$\underbrace{f \circ \phi_{\alpha}^{-1}}_{\text{By assumption}} = f \circ (\phi_{\beta}^{-1} \circ \phi_{\beta} \circ \phi_{\alpha}^{-1}) = \underbrace{(f \circ \phi_{\beta}^{-1})}_{\text{N}} \circ (\phi_{\beta} \circ \phi_{\alpha}^{-1})$$

$$\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

is a smooth bijection with smooth inverse

▶ Therefore $f \circ \phi_{\alpha}^{-1}$ is smooth on $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$

$$\iff$$

 $f \circ \phi_{\beta}^{-1}$ is smooth on $\phi_{\beta}(U_{\alpha} \cap U_{\beta})$.

Notion of Smooth func i's Well-defined Terminaly Pas det = 90 % are walled the Transition Functions

Examples of Smooth Surfaces

▶ Open subset of \mathbb{R}^2

 $ightharpoonup S^2 \subset \mathbb{R}^3$

If $U \subset \mathbb{R}^3$ open, $f: U \to \mathbb{R}$ smooth, $S = \{f = 0\}$, and $\forall p \in S, \ \nabla f(p) \neq \overline{0}$ then S is a smooth surface.

graphs of fins V=Gr - V c/R2 pry 3 (7, 4(n) : x = 1)

Exs in Alwa

X Atlas with one chart

Macas X homeo fo

Ohn set C R2

52 not home & of carcR2

(Wiscelly "Churus")

not easy to prove.

Can you do it with 2?

S2-M3 home to P2
What Missins N
Stereo proj From S= Coso,-1)