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Topics

I Metric spaces, isometries, Lipschitz mappings.
I Groups of isometries of the plane and sphere.
I Topological spaces and continuous mappings.
I Construction of topological spaces, identification

topology.
I Compact spaces, connected spaces.
I Surfaces as identification spaces.
I Surfaces as metric spaces: Riemannian metrics,

geodesics, Gaussian curvature.



Web - page and Notes

I Web - page for the course:

http://www.math.utah.edu/⇠toledo/5510.html
Look there for syllabus, homework, etc.

In particular

I Notes for the course also available there.

I Notes will be updated as course goes on.
Look for the version number.

I Notes of the daily lectures also available there. Notes
as projected will be posted every week.



Homework, tests, grading

I Homework to be handed in roughly every other week.
I Two midterm exams

I September 27
I November 8

I Final Exam: December 14, 10:30 - 12:30
I Grading: Homework , drop lowest 2: 35 %

Midterm Exams: 40 %
Final Exam: 25 %



Overview

Topological Spaces
generalize

%

Metric Spaces

specialize
&

Riemannian Metric

Let’s start:



Definition
A metric space (X , d) is a non-empty set X and a function
d : X ⇥ X ! R satisfying

1. For all x , y 2 X , d(x , y) � 0 and d(x , y) = 0 if and
only if x = y .

2. For all x , y 2 X , d(x , y) = d(y , x).
3. For all x , y , z 2 X , d(x , z)  d(x , y) + d(y , z) (called

the triangle inequality).

The function d is called the metric, it is also called the
distance function.







Two notable properties of this definition are:

I Its simplicity.
I Its wide applicability:

I large number of examples.
I great variety of examples



Examples of Metric Spaces

Next, look at examples.

To verify that a given (X , d) is a metric space,

main point usually is:

Verify the triangle inequality

The other properties are usually much easier to verify.



Example
Let X = R with the usual distance function
d(x , y) = |x � y |.







Example
Let X = R2 with the usual distance function

d(x , y) =
p

(x1 � y1)2 + (x2 � y2)2,

where x = (x1, x2) and y = (y1, y2).



Triangle Inequality

Given 3 points x , y , z 2 R2, let u = x � y and v = y � z.

Then u + v = x � z.

so d(x , z) = |u + v |, d(x , y) = |u|, d(y , z) = |v |.

Therefore the triangle inequality is equivalent to

|u + v |  |u|+ |v | for all u, v 2 R2.







squaring both sides this is equivalent to

|u + v |2  |u|2 + 2|u||v |+ |v |2.

Using the properties of the dot product, we see that we
want

|u+v |2 = (u+v)·(u+v) = u·u+2u·v+v ·  u·u+2|u||v |+v ·v ,

which is equivalent to

u · v  |u||v |

Familiar?





Question

I When does equality hold?

I When is u · v = |u||v |?

I When is d(x , z) = d(x , y) + d(y , z)?











Example
Let X = Rn with the usual distance function

d(x , y) =
p
(x1 � y1)2 + · · ·+ (x

n

� y

n

)2,

where x = (x1, . . . , xn

) and y = (y1, . . . yn

). The
verifications are exactly as for the case n = 2 just
discussed.





Other metrics on Rn

I The Taxicab metric

d(1)(x , y) = |x1 � y1|+ · · ·+ |x
n

� y

n

|

I For n = 2 this is the usual way to measure distance
when driving in Salt Lake City.

I Same applies to any city laid out in rectangular
coordinates.





I Triangle inequality for d(1):

For each i , 1  i  n, apply the triangle inequality in
R:

|x
i

� z

i

|  |x
i

� y

i

|+ |y
i

� z

i

|

and sum over i :

d(1)(x , z) =
nX

i=1

|x
i

� z

i

| 
nX

i=1

|x
i

� y

i

|+
nX

i=1

|y
i

� z

i

|,

which is the same as d(1)(x , y) + d(1)(y , z).





I When does equality hold in

d(1)(x , z)  d(1)(x , y) + d(1)(y , z) ?

I If and only if, for each i ,

|x
i

� z

i

| = |x
i

� y

i

|+ |y
i

� z

i

|

I Therefore, if and only if, for each i ,

y

i

lies between x

i

and z

i

.





I Picture for n = 2:

Given x = (x1, x2) and z = (z1, z2),

the set of all y = (y1, y2) for which

d(1)(x , z) = d(1)(x , y) + d(1)(y , z) looks like this:

Figure: Equality Set for the Taxicab Metric



I Another useful metric on Rn is the supremum metric

(or simply sup metric) defined by

d(1)(x , y) = max{|x1 � y1|, . . . , |xn

� y

n

|}.

I Details left as exercises.

I These distances are all defined by norms on Rn.





I One way to visualize metrics is by visualizing the
shapes of balls. Terminology:

I Let (X , d) be a metric space, x 2 X , r 2 R, r � 0
I The ball (or open ball) of radius r centered at x is

B(x , r) = {y 2 X |d(x , y) < r}.

I The closed ball of radius r centered at x is

B(x , r) = {y 2 X |d(x , y)  r}.

I The sphere of radius r centered at x

S(x , r) = {y 2 X |d(x , y) = r}.



I The pictures for n = 2 of the unit spheres of the
metrics defined so far:

Figure: Unit Spheres of d(1), d(2), d(1) (ordered from inner
to outer).



I The pictures of the unit spheres illustrate (for n = 2)

the following inequalities comparing the metrics:

1. d(2)(x , y)  d(1)(x , y) 
p

n d(2)(x , y).

2. d(1)(x , y)  d(2)(x , y) 
p

n d(1)(x , y).

3. d(1)(x , y)  d(1)(x , y)  n d(1)(x , y).

I Convince yourself that the pictures and inequalities
correspond.







Subspace of a Metric Space

I Let (X , d) be a metric space and Y ⇢ X .

I Let d

Y

= d |
Y⇥Y

be the restriction of the metric on X

to a function on Y ⇥ Y .

I Then d

Y

is a metric on Y , called the subspace metric.

I The metric space (Y , d
Y

) is called a subspace of
(X , d).





I Example of a subspace:

Let S

2 ⇢ R3 be the unit sphere S(0, 1) in the
d(2)-metric (or Euclidean metric) in R3, centered at
the origin 0 2 R3:

S

2 = {x = (x1, x2, x3) 2 R3 : x

2
1 + x

2
2 + x

2
3 = 1}

and let d

e

denote the subspace metric on S

2:

d

e

(x , y) = d(2)(x , y) for all x , y 2 S

2.

I (S2, d
e

) is a subspace of (R3, d(2)).



I
d

e

is called the extrinsic metric on S

2.

I The intrinsic metric d

i

on S

2 is the great-circle arc
distance:

Figure: Intrinsic Distance on S

2



I Elementary geometry (or trigonometry) gives

d

i

(x , y) = cos�1(x · y) for all x , y 2 S

2

where x · y is the usual dot product.

I (S2, d
i

) is not a subspace of R3.

I
d

e

(x , y) < d

i

(x , y) if x 6= y





I One goal of this course:

I Define (smooth) surface S ⇢ R3

I Define intrinsic distance d

S,i on any surface by

d

S,i(x , y) = inf{L(�)|� 2 P(x , y)}

where

I
P(x , y) is the collection of piecewise smooh curves

in S from x to y

I
L(�) denotes the length of �.

I Triangle inequality is easy for d

S,i .
I Prove that for S

2, d

i

as before is same as d

S

2,i .









Discrete Metric Space

I
X any non-empty set

I Define d : X ⇥ X ! R by

d(x , y) =

(
0 if x = y

1 if x 6= y .





French Railway Metric
I

X = R2.
I

d : X ⇥ X ! R defined by

d(x , y) =

(
|x � y | if x and y are in same ray from 0
|x |+ |y | otherwise,

I Picture





I Given x , y 2 X , define path from x to y .

I
d(x , y) = length of shortest path from x to y .

I Prove triangle inequality. Here’s one case:



p-adic metric

I Fix prime number p.
I If x 2 Z, x 6= 0, let e

p

(x) be the exponent of p in the
prime factorization of x , that is,

x = k p

e

p

(x) where p does not divide k .

I Let X = Z and let d

p

: X ⇥ X ! R be

d

p

(x , y) =

(
0 if x = y ,

p

�e

p

(x�y)) if x 6= y .



I
d

p

is called the p-adic metric on Z

I Triangle inequality: Given u, v 2 Z, u, v 6= 0,

e

p

(u + v) � min{e

p

(u), e
p

(v)}

therefore

p

�e

p

(u+v)  max{p

�e

p

(u), p�e(v)}



I Given x , y , z 2 Z, apply to u = x � y , v = y � z:

d

p

(x , z)  max{d

p

(x , y), d
p

(y , z)}.

called the ultrametric inequality, which =) triangle
inequality



I Example: If p = 7, then

d7(0, 1) = d7(0, 2) = . . . d7(0, 6) = d7(0, 8) = · · · = 1

while

d7(0, 7) = d7(0, 14) = d7(0, 21) = . . . d7(0, 56) = · · · = 1
7

and
d7(0, 49) = d7(0, 98) = · · · = 1

49
etc.





I Extend d

p

to Q:
I Write

x =
k

l

p

e

p

(x)

where k , l 2 Z no common factor, p does not divide k

nor l .
I

e

p

(x) may now be negative.
I Define d

p

(x , y) as before.
I Example:

d7(0,
2
5
) = 1, d7(0,

2
7
) = 7, d7(0,

10
49

) = 49, . . .





I Example: the sequence 7n

I Converges to 0 in d7.
I Is bounded in d

p

for p 6= 7

I While the sequence 1
7n

I ! 1 in d7
I is bounded in d

p

for p 6= 7.



Convergence

I Let {x

n

} be a sequence in (X , d).

1. Let x 2 X . We say lim{x

n

} = x iff for all ✏ > 0 there is
an N(= N(✏)) 2 N so that d(x , x

n

) < ✏ for all n > N.

2. We say that {x

n

} converges iff there exists x 2 X so
that lim{x

n

} = x .

3. We say that {x

n

} is a Cauchy sequence iff for all ✏ > 0
there exists N 2 N so that d(x

m

, x
n

) < ✏ for all
m, n > N.




