# Introduction to Algebraic and Geometric Topology Week 1

Domingo Toledo

University of Utah

Fall 2017

## **Topics**

- Metric spaces, isometries, Lipschitz mappings.
- Groups of isometries of the plane and sphere.
- Topological spaces and continuous mappings.
- Construction of topological spaces, identification topology.
- Compact spaces, connected spaces.
- Surfaces as identification spaces.
- Surfaces as metric spaces: Riemannian metrics, geodesics, Gaussian curvature.

# Web - page and Notes

Web - page for the course:

http://www.math.utah.edu/~toledd/5510.html Look there for syllabus, homework, etc.

- Notes for the course also available there.
- ► Notes will be updated as course goes on. Look for the Version number.
- Notes of the daily lectures also available there. Notes as projected will be posted every week.

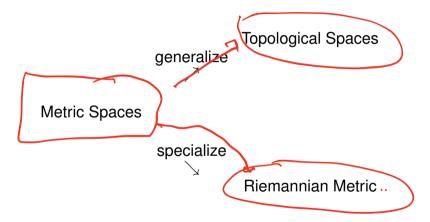
# Homework, tests, grading

- Homework to be handed in roughly every other week.
- Two midterm exams
  - September 27November 8
- ► Final Exam: December 14, 10:30 12:30
- ► Grading: Homework, drop lowest 2: 35 %

  Midterm Exams: 40 %

  Final Exam: 25 %

## Overview



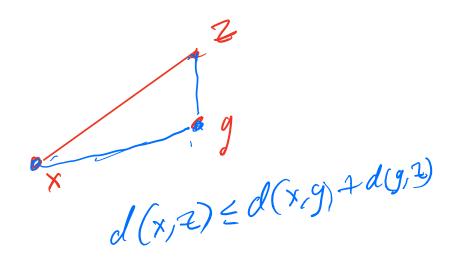
Let's start:

#### **Definition**

A *metric space* (X, d) is a non-empty set X and a function  $d: X \times X \to \mathbb{R}$  satisfying

- 1. For all  $x, y \in X$ ,  $d(x, y) \ge 0$  and d(x, y) = 0 if and only if x = y.
  - 2. For all  $x, y \in X$ , d(x, y) = d(y, x).
  - 3. For all  $x, y, z \in X$ ,  $d(x, z) \le d(x, y) + d(y, z)$  (called the *triangle inequality*).

The function *d* is called the *metric*, it is also called the *distance function*.



day=distance, between

 $\frac{d(x,y) = ly - yl}{y - xl \ge 0, = 0} = x = 9,$   $\frac{(y - xl = lx - yl)}{y}$   $\frac{d(x,z) = d(xyy) \cdot d(y,z)}{d(x,z) \ne d(xy)} = d(xyy) \cdot d(y,z)$ 

#### Two notable properties of this definition are:

- Its simplicity.
- Its wide applicability:
  - plarge number of examples.

    great variety of examples

# Examples of Metric Spaces

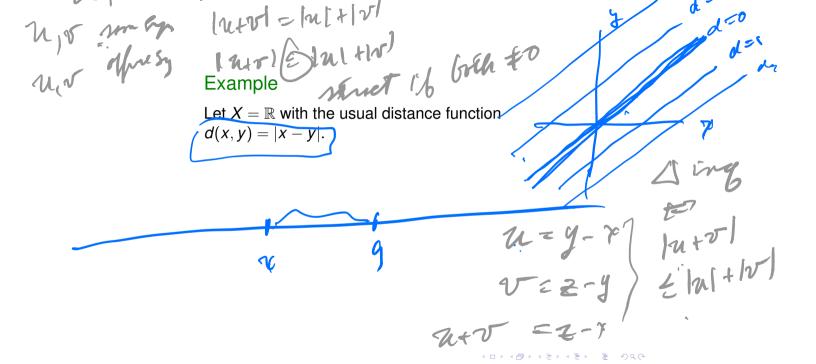
Next, look at examples.

To verify that a given (X, d) is a metric space, main point usually is:

Verify the triangle inequality

The other properties are usually much easier to verify. Same Sign (Golh 70 or both 20)

11, 5 April April ( one 70, chlin 20) jor



$$d(x,y) = |y-x|$$

$$d(x,y) = 0 \Rightarrow x = y$$

$$d(x,y) = d(x,y)$$

$$\Delta inq : u = y - x$$

$$V = Z - y$$

d(x, z) = d(x, y) + d(y, z) Aus: y between x & z y

Let  $X = \mathbb{R}^2$  with the usual distance function

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2},$$

where  $x = (x_1, x_2)$  and  $y = (y_1, y_2)$ .

花=9-8

で=モツ

|| u+v|! < ||u|+ ||r||
||u+v|! =

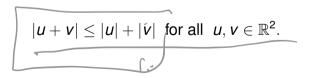
# Triangle Inequality

Given 3 points  $x, y, z \in \mathbb{R}^2$ , let u = x - y and v = y - z.

Then u + v = x - z.

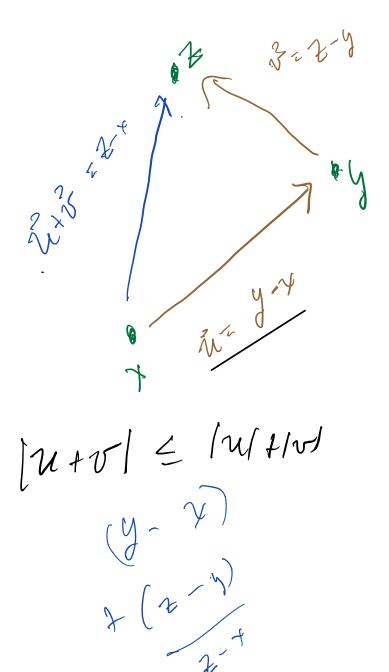
so 
$$d(x,z) = |u+v|, d(x,y) = |u|, d(y,z) = |v|.$$

Therefore the triangle inequality is equivalent to









$$u, v \in \mathbb{R}^{2}$$

$$(u, u) (v, v)$$

$$|u| = \sqrt{u^{2} + u^{2}}$$

$$u \cdot v = u, v, + u, v$$

$$|u| = \sqrt{u \cdot u}$$

$$|u| = \sqrt{u \cdot u}$$

$$|u + v| \leq |u| + |v|$$

$$(u + v) \cdot (u + v) \leq |u|^{2} + |v|^{2}$$

$$(u + v) \cdot (u + v) \leq |u|^{2} + |v|^{2}$$

$$(u + v) \cdot (u + v) \leq |u|^{2} + |v|^{2}$$

$$(u + v) \cdot (u + v) \leq |u|^{2}$$

$$(u + v) \cdot (u + v) \leq |u|^{2}$$

$$(u + v) \cdot (u + v) \leq |u|^{2}$$

$$(u + v) \cdot (u + v) \leq |u|^{2}$$

squaring both sides this is equivalent to

$$|u+v|^2 \le |u|^2 + 2|u||v| + |v|^2.$$

Using the properties of the dot product, we see that we want

$$|u+v|^2 = (u+v)\cdot(u+v) = u\cdot u + 2u\cdot v + v\cdot \le u\cdot u + 2|u||v| + v\cdot v,$$
which is equivalent to
$$u\cdot v \le |u||v|$$
Familiar?

$$\frac{C-S}{|u\cdot x| \in |u||v|}$$

$$-|u||v|| = \frac{|u\cdot v|}{|u\cdot v|}$$

### Question

When does equality hold?

▶ When is  $u \cdot v = |u||v|$ ?

• When is d(x, z) = d(x, y) + d(y, z)?

$$d(x,z) = d(x,y) + d(y,z)$$

One pf: gran u, v 
$$\in \mathbb{R}^2$$
,  $t \in \mathbb{R}$ 
 $(t u + v): (t u + v) \ge 0$ 

$$\begin{array}{c}
t^2 (u u) + 2t (u \cdot v) + (v \cdot v) \ge 0 \\
4t^2 + bt + C \ge 0
\end{array}$$

Non real dulls
$$\begin{array}{c}
b^2 - 4ac & (n = 0) \\
(2(u \cdot v))^2 - 4(u \cdot u)(v \cdot v) \le 0 \\
4t (u \cdot v)^2 \le 4(u \cdot u)(v \cdot v)
\end{array}$$

Aside u.v = |w|v/coo  $|coo| \leq 1$   $= coo = \pm 1$ = uv = (u//v/ in C-S = Eu, vy linenly

d(x,2) =d(x,4) +d9,3) - ( wiv = |w|v|)

4,9 e 1127 d(x,2) = d(x,9)+d(9,2)1

## Example

Let  $X \neq \mathbb{R}^n$  with the usual distance function

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2},$$

where  $x = (x_1, ..., x_n)$  and  $y = (y_1, ..., y_n)$ . The verifications are exactly as for the case n = 2 just discussed.

de, (8,9)

## Other metrics on $\mathbb{R}^n$

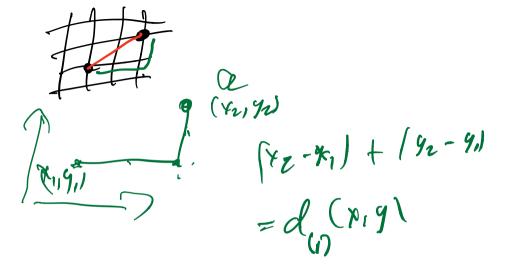
Manhetter

► The Taxicab metric

SLC

$$d_{(1)}(x,y) = |x_1 - y_1| + \cdots + |x_n - y_n|$$

- ► For *n* = 2 this is the usual way to measure distance when driving in Salt Lake City.
- Same applies to any city laid out in rectangular coordinates.



▶ Triangle inequality for  $d_{(1)}$ :

For each i,  $1 \le i \le n$ , apply the triangle inequality in  $\mathbb{R}$ :

$$\left(|x_i-z_i|\leq |x_i-y_i|+|y_i-z_i|\right)$$

and sum over *i*:

$$d_{(1)}(x,z) = \sum_{i=1}^{n} |x_i - z_i| \leq \sum_{i=1}^{n} |x_i - y_i| + \sum_{i=1}^{n} |y_i - z_i|,$$

which is the same as  $d_{(1)}(x, y) + d_{(1)}(y, z)$ .

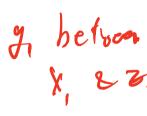
ははして、一ていナイルーとと

When does equality hold in 
$$d_{(1)}(x,z) \le d_{(1)}(x,y) + d_{(1)}(y,z) ?$$

▶ If and only if, for each *i*,

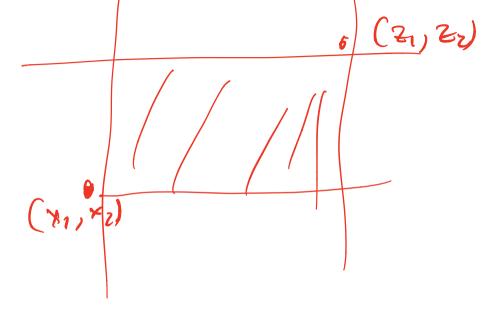
$$|x_i-z_i|=|x_i-y_i|+|y_i-z_i|$$

► Therefore, if and only if, for each i, y<sub>i</sub> lies between x<sub>i</sub> and z<sub>i</sub>.



2 hd

X<sub>2</sub> & Z<sub>2</sub>



▶ Picture for n = 2:

Given 
$$x = (x_1, x_2)$$
 and  $z = (z_1, z_2)$ ,  
the set of all  $y = (y_1, y_2)$  for which  
 $d_{(1)}(x, z) = d_{(1)}(x, y) + d_{(1)}(y, z)$  looks like this:

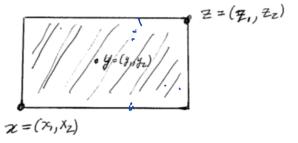
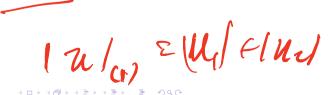


Figure: Equality Set for the Taxicab Metric

Another useful metric on  $\mathbb{R}^n$  is the *supremum metric* (or simply *sup metric*) defined by

$$d_{(\infty)}(x,y) = \max\{|x_1-y_1|,\ldots,|x_n-y_n|\}.$$

- Details left as exercises.
- ▶ These distances are all defined by *norms* on  $\mathbb{R}^n$ .



d(o,n) = |n|Norm on  $R^n$  (on a bedonger)  $Special R^n$   $Special R^n$   $Special R^n$   $Special R^n$ 1) [U|Zo, =0 = n=0 2) [U|Zo, =0 = n=0 4 = R 3) [u+v|<|u|+|v|

- One way to visualize metrics is by visualizing the shapes of balls. Terminology:
- ▶ Let (X, d) be a metric space  $(X) \in X, (D) \in \mathbb{R}, r \ge 0$
- ► The ball (or open ball) of radius r centered at x is

$$B(x,r) = \{y \in X | d(x,y) < r\}.$$

The closed ball of radius r centered at x is

$$\overline{B}(x,r) = \{ y \in X | d(x,y) \le r \}.$$

▶ The sphere of radius r centered at x

$$S(x,r)=\{y\in X|d(x,y)|=r\}.$$

► The pictures for n = 2 of the unit spheres of the metrics defined so far:

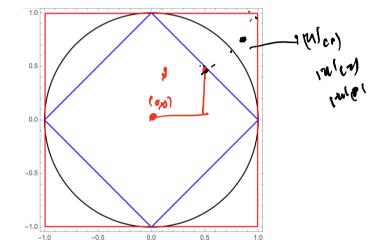


Figure: Unit Spheres of  $d_{(1)}, d_{(2)}, d_{(\infty)}$  (ordered from inner to outer).

KP 600

←ロ → ←団 → ← 豆 → ← ● → へのの

► The pictures of the unit spheres illustrate (for n = 2) the following inequalities comparing the metrics:

1. 
$$d_{(2)}(x,y) \leq d_{(1)}(x,y) \leq \sqrt{n} d_{(2)}(x,y)$$
.

- 2.  $d_{(\infty)}(x,y) \leq d_{(2)}(x,y) \leq \sqrt{n} d_{(\infty)}(x,y)$ .
- 3.  $d_{(\infty)}(x,y) \leq d_{(1)}(x,y) \leq n d_{(\infty)}(x,y)$ .
- Convince yourself that the pictures and inequalities correspond.

T Proof of C-5 ineg using (Eutv). (turo) 20 mi2 t2+2(u,v) t + [r/2] ly ( ) disc = 0 ( ) double root but double rook must be real to ER (touso). (tousol =0 =) (tousor =0) for-the

fu 7 12.012 (m112 discrmar 4(u.v) z-MIV12) =0 Et diser = 0
Et double root ment be real: tock

### Subspace of a Metric Space

- ▶ Let (X, d) be a metric space and  $(Y) \subset X$ .
- Let  $\underline{d_Y} = \underline{d}|_{Y \times Y}$  be the restriction of the metric on X to a function on  $Y \times Y$ .
- ▶ Then  $d_Y$  is a metric on Y, called the *subspace metric*.
- ► The metric space  $(Y, d_Y)$  is called a *subspace* of (X, d).

$$5^{2} = U \text{ Not sphere in } \mathbb{R}^{3}$$

$$d_{e}(x,y) = d_{e}(x,y)$$

$$d_{e} = \text{ whire }$$

$$d_{e} = \text{ whire }$$

Example of a subspace:

Let  $S^2 \subset \mathbb{R}^3$  be the unit sphere S(0,1) in the  $d_{(2)}$ -metric (or *Euclidean metric*) in  $\mathbb{R}^3$ , centered at the origin  $0 \in \mathbb{R}^3$ :

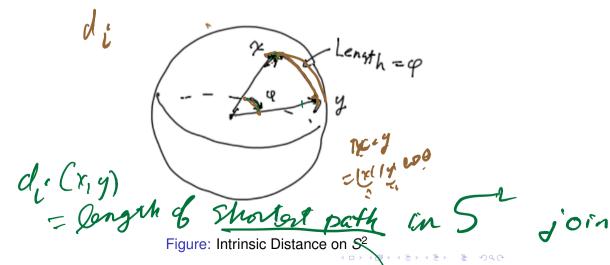
$$S^2 = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$$

and let  $d_e$  denote the subspace metric on  $S^2$ :

$$d_e(x,y) = d_{(2)}(x,y)$$
 for all  $x,y \in S^2$ .

•  $(S^2, d_e)$  is a subspace of  $(\mathbb{R}^3, d_{(2)})$ .

- $d_e$  is called the *extrinsic metric* on  $S^2$ .
- ► The *intrinsic metric*  $d_i$  on  $S^2$  is the great-circle arc distance:



Know! grea

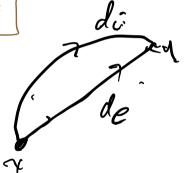
great circle

► Elementary geometry (or trigonometry) gives

$$d_i(x,y) = \cos^{-1}(x \cdot y)$$
 for all  $x, y \in S^2$ 

where  $x \cdot y$  is the usual dot product.

- $(S^2, d_i)$  is *not* a subspace of  $\mathbb{R}^3$ .
- $d_e(x, y) < d_i(x, y)$  if  $x \neq y$



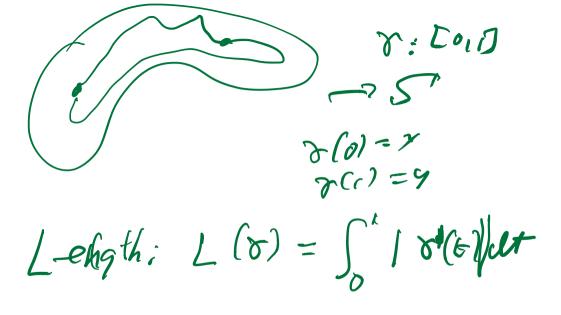
If Know that L (greatcick and) = Inf S L (8): 2 mm 4 m) then Direct for the Cigreat cords are distance. U on Show would be clear.

- One goal of this course:
  - ▶ Define (smooth) surface  $S \subset \mathbb{R}^3$
  - ▶ Define intrinsic distance  $d_{S,i}$  on any surface by

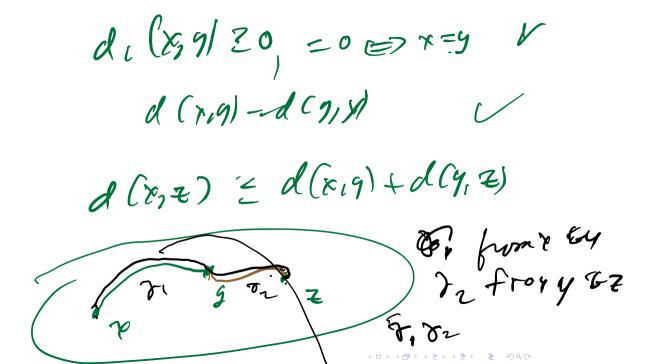
$$d_{\mathcal{S},i}(x,y) = \inf\{L(\gamma)|\gamma \in P(x,y)\}$$

#### where

- P(x, y) is the collection of piecewise smooh curves in S from x to y
- $L(\gamma)$  denotes the length of  $\gamma$ .
- ▶ Triangle inequality is easy for  $d_{S,i}$ .
- ▶ Prove that for  $S^2$ ,  $d_i$  as before is same as  $d_{S^2,i}$ .



 $d_i(x_iq) = enf \{L(\sigma); \tau \text{ bell} from x tig)$ ( min Meel not)



Discrete Metric Space

"Concatenation"

- X any non-empty set
  - ▶ Define  $d: X \times X \rightarrow \mathbb{R}$  by

▶ Define 
$$d: X \times X \to \mathbb{R}$$
 b

$$d(x,y) = \begin{cases} 0 \text{ if } x = y \\ 1 \text{ if } x \neq y. \end{cases}$$

$$d(r,r) \leq L(\sigma,r) = L(\sigma,r) + L(\sigma_z) \qquad \sigma_{r,\sigma}$$

$$\leq d(r,\sigma) \qquad d(r,\sigma) \qquad d(r,\sigma)$$

 $d(x,g) = \begin{cases} 0 & 6 & x=y \\ 1 & 6 & x \neq g \end{cases}$ d(4,9/20, =0 @ 824 d(x,y) ~19,x) C d(x,z) & d(x,9)+d(9,2) x=1 9=3 = x=2

A de least 610 =1

$$X = \mathbb{R}^2$$
.

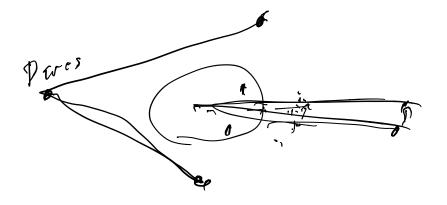
 $d: X \times X \to \mathbb{R}$  defined by

$$d(x,y) = \begin{cases} |x-y| & \text{if } x \text{ and } y \text{ are in same ray from 0} \\ \hline |x| + |y| & \text{otherwise,} \end{cases}$$

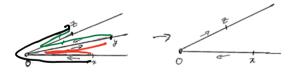
Picture







- ▶ Given  $x, y \in X$ , define path from x to y.
- ightharpoonup d(x,y) = length of shortest path from x to y.
- Prove triangle inequality. Here's one case:



## p-adic metric parachorm

#### Fix prime number p./

▶ If  $x \in \mathbb{Z}$ ,  $x \neq 0$ , let  $e_p(x)$  be the exponent of p in the prime factorization of x, that is,

 $x = k p^{e_p(x)}$  where p does not divide k.

▶ Let  $X = \mathbb{Z}$  and let  $d_p : X \times X \to \mathbb{R}$  be

$$\chi = \int_{\ell}^{\mathbf{Q}_{f}} \int_{\ell}^{\mathbf{Q}_{f}} \int_{\ell}^{\mathbf{Q}_{f}} \int_{\mathbf{Q}_{f}}^{\mathbf{Q}_{f}} \int_{\mathbf{Q}_{f}}^{\mathbf{Q}_{$$

- $ightharpoonup d_p$  is called the *p*-adic metric on  $\mathbb{Z}$
- ▶ Triangle inequality: Given  $u, v \in \mathbb{Z}$ ,  $u, v \neq 0$ ,

$$e_p(u+v) \geq \min\{e_p(u), e_p(v)\}$$

therefore

$$p^{-e_p(u+v)} \leq \max\{p^{-e_p(u)}, p^{-e(v)}\}$$

▶ Given  $x, y, z \in \mathbb{Z}$ , apply to u = x - y, v = y - z:

$$d_p(x,z) \leq \max\{d_p(x,y),d_p(y,z)\}.$$

called the *ultrametric inequality*, which  $\Longrightarrow$  triangle inequality

• Example: If p = 7, then

$$d_7(0,1) = d_7(0,2) = \dots d_7(0,6) = d_7(0,8) = \dots = 1$$
while

$$d_7(0,7) = d_7(0,14) = d_7(0,21) = \dots d_7(0,56) = \dots = \frac{1}{7}$$

and

$$d_7(0, \underline{49}) = d_7(0, 98) = \cdots = \frac{1}{49}$$
 etc.

$$|\mathcal{U}|_{p} = p^{-e_{s}(n)}$$

$$|\mathcal{U}|_{p} = |\mathcal{U}|_{p} + |\mathcal{U}|_{s}$$

d(x11/20) 20 & x = 50 d(x11/20) L

d(x,2) &d(x,1)+d(x,2)

- ▶ Extend  $d_p$  to  $\mathbb{Q}$ :
- Write

$$x = \frac{k}{l} p^{e_p(x)}$$

where  $k, l \in \mathbb{Z}$  no common factor, p does not divide k nor l.

- $e_p(x)$  may now be negative.
- ▶ Define  $d_p(x, y)$  as before.
- Example:

$$d_7(0,\frac{2}{5}) = 1, d_7(0,\frac{2}{7}) = 7, d_7(0,\frac{10}{49}) = 49, \dots$$

pep(w) | u pep(w) | v

pmm (ep(w), e,(w) | | acr

 $e_{p}(u+r)$  ? Thin  $Se_{p}(u)$ ,  $e_{p}(u)$   $-e_{p}(u+r)$   $E_{p}(u)$   $E_{p}(u+r)$   $E_{p}(u+r)$ 

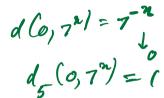
[ | n+v| = mer [ | n| p , | of p ] then

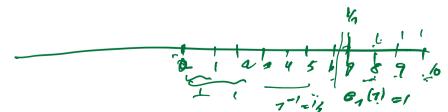
{ | n|, + | v|,

"ultrametra med

Example: the sequence 7<sup>n</sup>

- ▶ Converges to 0 in  $d_{\overline{4}}$ .
- ▶ Is bounded in  $d_p$  for  $p \neq 7$
- ▶ While the sequence  $\frac{1}{7^n}$ 
  - $ightharpoonup o \infty$  in  $d_7$
  - is bounded in  $d_p$  for  $p \neq 7$ .





# Convergence

- Let  $\{x_n\}$  be a sequence in (X, d).
  - 1. Let  $x \in X$ . We say  $\lim\{x_n\} = x$  iff for all  $\epsilon > 0$  there is an  $N(=N(\epsilon)) \in \mathbb{N}$  so that  $d(x,x_n) < \epsilon$  for all n > N.
  - 2. We say that  $\{x_n\}$  converges iff there exists  $x \in X$  so that  $\lim \{x_n\} = x$ .
  - 3. We say that  $\{x_n\}$  is a *Cauchy sequence* iff for all  $\epsilon > 0$  there exists  $N \in \mathbb{N}$  so that  $d(x_m, x_n) < \epsilon$  for all m, n > N.

Will continue with Convergence and completeness in metire spaces Wext Week