MATH 3220-3 HOMEWORK 5

DUE APRIL 22 BEFORE CLASS

(1) Recall the parametrized torus T of Homework 4 obtained by fixing $0<b<a$ and defining $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with image T by $\Phi(\phi, \theta)=(x(\phi, \theta), y(\phi, \theta), z(\phi, \theta))$ where

$$
\begin{aligned}
x & =(a+b \cos \phi) \cos \theta \\
y & =(a+b \cos \phi) \sin \theta \\
z & =b \sin \phi
\end{aligned}
$$

By periodicity, $T=\Phi(D)$ where $D=I_{1} \times I_{2}$ for any two intervals I_{1}, I_{2} of length 2π.

For this problem and the next you'll need to use the definition of singular cubes in U (as maps of the standard cube to U), singular cubical chains, their boundaries. See the posted lecture notes for week 12 , starting page 46.
(a) Define a singular square $\sigma:[0,1]^{2} \rightarrow \mathbb{R}^{3}$ with image in T (briefly, a singular square in T) by

$$
\sigma(s, t)=\Phi(2 \pi s, 2 \pi t)
$$

Check that $\partial \sigma=0$.
(b) For any 2-form $\alpha \in A^{2}\left(\mathbb{R}^{3}\right)$ define $\int_{T} \alpha$ to be $\int_{D} \Phi^{*} \alpha$ for any $D=I_{1} \times I_{2}$ as above, for example. $D=[0,2 \pi] \times[0,2 \pi]$. Prove that

$$
\int_{\sigma} \alpha=\int_{T} \alpha
$$

(c) Show, without any calculation, that $\int_{T} d y \wedge d z=0$.
(d) More generally, apply Theorem 10.39 in Rudin to show if $\alpha \in A^{2}\left(\mathbb{R}^{3}\right)$ is any closed form, that is, $d \alpha=0$, then $\int_{T} \alpha=0$.
(2) (See Rudin, Chapter 10,Exercise 22) Let $\zeta \in A^{2}\left(\mathbb{R}^{3} \backslash 0\right)$ be defined by

$$
\zeta=\frac{1}{r^{3}}(x d y \wedge d z-y d x \wedge d z+z d x \wedge d y)
$$

where $r=r(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}$ is distance from the origin. Let $D=$ $[0, \pi] \times[0,2 \pi]$ and $\Sigma: D \rightarrow \mathbb{R}^{3}$ the parametrized surface

$$
\Sigma(u, v)=(x, y, z)=(\sin u \cos v, \sin u \sin v, \cos u)
$$

(a) Prove that $d \zeta=0$, that is, ζ is closed.
(b) Show that $\Sigma(D)=S^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\}$ the unit sphere in \mathbb{R}^{3} centered at 0 . Show that Σ maps $(0, \pi) \times[0,2 \pi)$ bijectively onto $S^{2} \backslash\{N, S\}$. where N, S are the north and south poles $(0,0, \pm 1)$ and collapses $0 \times[0,2 \pi]$ to N and $\pi \times[0.2 \pi]$ to S. Sketch.
(c) Check that $\Sigma^{*} \zeta=\sin u d u \wedge d v$, the area form of S^{2} in spherical coordinates, so $\int_{\Sigma} \zeta=4 \pi \neq 0$.
(d) Prove that ζ is not exact. Follow the steps of Problem 1(a),(b). First let σ : $[0,1] \times[0,1] \rightarrow S^{2} \subset \mathbb{R}^{3} \backslash\{0\}$ be the singular square defined by the map $\sigma(s, t)=\Sigma(\pi s, 2 \pi t)$. Show that $\partial \sigma=\phi_{N}-\phi_{S}$, where ϕ_{N}, ϕ_{S} are the maps $[0,1] \rightarrow S^{2} \subset \mathbb{R}^{3} \backslash\{0\}$ that send $[0,1]$ to N, S.
(e) Then show that for any $\alpha \in A^{2}\left(\mathbb{R}^{3} \backslash\{0\}\right), \int_{\sigma} \alpha=\int_{\Sigma} \alpha$. Then $\forall \eta \in A^{1}\left(\mathbb{R}^{3} \backslash\{0\}\right)$,

$$
\int_{\Sigma} d \eta=\int_{\sigma} d \eta=\int_{\partial \sigma} \eta=\int_{0}^{1} \phi_{N}^{*} \eta-\int_{0}^{1} \phi_{S}^{*} \eta=0
$$

since $\phi_{N}^{*} \eta=0=\phi_{S}^{*} \eta$ because ϕ_{N}, ϕ_{S} are constant maps. Thus ζ is not exact.
(f) But ζ is exact in $\mathbb{R}^{3} \backslash Z$, where $Z=$ the z-axis. In fact, let

$$
\lambda=\left(-\frac{z}{r}\right)\left(\frac{x d y-y d x}{x^{2}+y^{2}}\right) \in A^{1}\left(\mathbb{R}^{3} \backslash Z\right)
$$

Show, by direct calculation, that $d \lambda=\zeta$.
Motivation: On $(0, \pi) \times[0,2 \pi], \Sigma^{*} \zeta=\sin u d u \wedge d v=d(-\cos u d v)$ and

$$
\cos u=\frac{z}{r}, \quad d v=\frac{x d y-y d x}{x^{2}+y^{2}} .
$$

(g) Show that, if T is the torus of Problem $1, \int_{T} \zeta=0$
(3) Two problems relevant to Lebesgue measure and integration:
(a) Let $E=\mathbb{Q} \cap[0,1]$ and let I_{1}, \ldots, I_{k} ve a finite collection of open intervals in \mathbb{R} covering E, that is, $E \subset \cup_{i=1}^{k} I_{i}$. Prove that $\sum_{i=1}^{k} \ell\left(I_{i}\right) \geq 1$, where $\ell\left(I_{i}\right)$ is the length of I_{i}.
(b) (Rudin, Chapter 11, problem 5) Let

$$
\left.\begin{array}{rl}
g(x) & = \begin{cases}0 & 0 \leq x \leq \frac{1}{2} \\
1 & \frac{1}{2}<x \leq 1\end{cases} \\
f_{2 i}(x) & =g(x) \quad 0 \leq x \leq 1
\end{array}\right\}
$$

Show that

$$
\liminf _{n \rightarrow \infty} f_{n}(x)=0 \text { for } 0 \leq x \leq 1 \text { but } \int_{0}^{1} f_{n}(x) d x=\frac{1}{2}
$$

