MATH 3220-3 HOMEWORK 4

DUE APRIL 3

Fix $0<b<a$ and define $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $\Phi(\phi, \theta)=(x(\phi, \theta), y(\phi, \theta), z(\phi, \theta))$ where

$$
\begin{aligned}
x & =(a+b \cos \phi) \cos \theta \\
y & =(a+b \cos \phi) \sin \theta \\
z & =b \sin \phi
\end{aligned}
$$

This is a parametrized surface in \mathbb{R}^{3}. Let T denote its image, which is a torus. By periodicity, $T=\Phi(D)$ where $D=I_{1} \times I_{2}$ for any two intervals I_{1}, I_{2} of length 2π. We have many choices for D. In each problem we may make a different choice as convenient.
(1) (a) Sketch T. Show the meaning of a, b, ϕ, θ in your sketch.
(b) Prove that T is the same as the set of solutions of $g(x, y, z)=0$ where

$$
g(x, y, z)=\left(x^{2}+y^{2}+z^{2}-a^{2}-b^{2}\right)^{2}-4 a^{2}\left(b^{2}-z^{2}\right)
$$

(c) Show that the gradient $\nabla_{(x, y, z)} g \neq 0$ at every (x, y, z) with $g(x, y, z)=0$
(d) What would happen if $0<b=a$? Would the last statement still be true?
(e) What would happen if $0=b<a$?
(f) $g(x, y, z)$ is an equation of degree 4 in x, y, z. Is it possible to define T by equations of smaller degree?
(2) With the same meaning of Φ, D and T, let $f: T \rightarrow \mathbb{R}$ be the function $f(x, y, z)=x$ for $(x, y, z) \in T$. (See Rudin, exercise 9.12 , with different notation).
(a) Use the parametrization Φ to find the critical points of f on T. In other words, find the points in D (say, take $D=[0,2 \pi] \times[0.2 \pi]$) where the gradient of $f \circ \Phi$ vanishes.
(b) For each critical point that you found, show that it is non-degenerate and decide if it is a local maximum, local minimum, or saddle point.
(c) Find the critical points of f by applying the method of Lagrange multipliers to f and the equation $g=0$ above. Check that you got the same critical points as those that you found using the parametrization.
(3) With the same meaning of Φ, D, T :
(a) For each $p=(\phi, \theta) \in D$, Find

$$
\frac{\partial \Phi}{\partial \phi}(p) \wedge \frac{\partial \Phi}{\partial \theta}(p) \in \Lambda_{1}^{2}\left(\mathbb{R}^{3}\right)
$$

(b) Find the norm $\left|\frac{\partial \Phi}{\partial \phi} \wedge \frac{\partial \Phi}{\partial \theta}\right|$.
(c) Use the formula (to be discussed in class) for the area of a parametrized surface $\Phi: D \rightarrow \mathbb{R}^{n}$

$$
\text { Area }=\int_{D}\left|\frac{\partial \Phi}{\partial \phi} \wedge \frac{\partial \Phi}{\partial \theta}\right| d \phi d \theta
$$

to find the area of T. Any surprises? Any remarks?
(d) Take $D=[-\pi / 2,3 \pi / 2] \times[-\pi / 2,3 \pi / 2]$, and subdivide D into D_{1} and D_{2} by the value of the first coordinate ϕ, that is, define

$$
D_{1}=D \cap\{-\pi / 2 \leq \phi \leq \pi / 2\}, \quad D_{2}=D \cap\{\pi / 2 \leq \phi \leq 3 \pi / 2\}
$$

Let

$$
T_{1}=\Phi\left(D_{1}\right), \quad T_{2}=\Phi\left(D_{2}\right)
$$

so that $T=T_{1} \cup T_{2}$ with $T_{1} \cap T_{2}$ one-dimensional, hence area zero.
Find the areas of T_{1}, T_{2}, check that they add to the area of T. Finally check with your sketch of T to see if the one you found to be of larger area corresponds to what you see in your sketch.
(4) Same $\Phi, T, D_{1}, D_{2}, T_{1}, T_{2}$ as in last problem. Find
(a) $\Phi^{*}(d y \wedge d z)$
(b) $\int_{T} \Phi^{*}(d y \wedge d z)$
(c) For $i=1,2$ subdivide $D_{i}=D_{i, 1} \cup D_{i, 2}$ by the value of the second coordinate θ :

$$
D_{i, 1}=D_{i} \cap\{-\pi / 2 \leq \theta \leq \pi / 2\} \text { and } D_{i, 2}=D_{i} \cap\{\pi / 2 \leq \theta \leq 3 \pi / 2\}
$$

Let $T_{i, j}=\Phi\left(D_{i, j}\right)$ be the corresponding decomposition of T :

$$
T=T_{1,1} \cup T_{1,2} \cup T_{2,1} \cup T_{2,2}
$$

with all intersections zero or one-dimensional, hence area zero.
(i) Find the four values of

$$
\int_{T_{i, j}} \Phi^{*}(d y \wedge d z) \text { for } i, j=1,2
$$

by computing the integrals of the form you found in part (a) over $D_{i, j}$
(ii) Let $p_{y, z}: T \rightarrow \mathbb{R}^{2}$ be projection on the (y, z)-plane: $p_{y, z}(x, y, z)=(y, z)$, Prove (briefly, say by looking at the sketch) that $\left.p_{y, z}\right|_{i, j}: T_{i, j} \rightarrow \mathbb{R}^{2}$ is bijective onto its image, with smooth inverse.
(iii) From the general theory it follows that

$$
\int_{D_{i, j}} \Phi^{*}(d y \wedge d z)=\int_{T_{i, j}}\left(p_{y, z}\right)^{*}(d y \wedge d z)= \pm \operatorname{Area}\left(p_{y, z}\left(T_{i, j}\right)\right)
$$

Find these projections $p_{y, z}\left(T_{i, j}\right)$ (look at your sketch) and check this last equation by using elementary geometry, then compare with your answer in (i).

