
MATH 3220-3 HOMEWORK 4

DUE APRIL 3

Fix 0 < b < a and define Φ : R2 → R3 by Φ(φ, θ) = (x(φ, θ), y(φ, θ), z(φ, θ)) where

x = (a+ b cosφ) cos θ

y = (a+ b cosφ) sin θ

z = b sinφ

This is a parametrized surface in R3. Let T denote its image, which is a torus. By periodicity,
T = Φ(D) where D = I1 × I2 for any two intervals I1, I2 of length 2π. We have many
choices for D. In each problem we may make a different choice as convenient.

(1) (a) Sketch T . Show the meaning of a, b, φ, θ in your sketch.
(b) Prove that T is the same as the set of solutions of g(x, y, z) = 0 where

g(x, y, z) = (x2 + y2 + z2 − a2 − b2)2 − 4a2(b2 − z2)

(c) Show that the gradient∇(x,y,z)g 6= 0 at every (x, y, z) with g(x, y, z) = 0
(d) What would happen if 0 < b = a? Would the last statement still be true?
(e) What would happen if 0 = b < a?
(f) g(x, y, z) is an equation of degree 4 in x, y, z. Is it possible to define T by

equations of smaller degree?

(2) With the same meaning of Φ, D and T , let f : T → R be the function f(x, y, z) = x
for (x, y, z) ∈ T . (See Rudin, exercise 9.12, with different notation).
(a) Use the parametrization Φ to find the critical points of f on T . In other words,

find the points in D (say, take D = [0, 2π]× [0.2π]) where the gradient of f ◦Φ
vanishes.

(b) For each critical point that you found, show that it is non-degenerate and decide
if it is a local maximum, local minimum, or saddle point.

(c) Find the critical points of f by applying the method of Lagrange multipliers to
f and the equation g = 0 above. Check that you got the same critical points as
those that you found using the parametrization.

(3) With the same meaning of Φ, D, T :
(a) For each p = (φ, θ) ∈ D, Find
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∂φ
(p) ∧ ∂Φ

∂θ
(p) ∈ Λ2(R3)
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(b) Find the norm
∣∣∣∂Φ
∂φ
∧ ∂Φ

∂θ

∣∣∣.
(c) Use the formula (to be discussed in class) for the area of a parametrized surface

Φ : D → Rn

Area =

∫
D

∣∣∣∂Φ

∂φ
∧ ∂Φ

∂θ

∣∣∣dφdθ
to find the area of T . Any surprises? Any remarks?

(d) Take D = [−π/2, 3π/2] × [−π/2, 3π/2], and subdivide D into D1 and D2 by
the value of the first coordinate φ, that is, define

D1 = D ∩ {−π/2 ≤ φ ≤ π/2}, D2 = D ∩ {π/2 ≤ φ ≤ 3π/2}
Let

T1 = Φ(D1), T2 = Φ(D2)

so that T = T1 ∪ T2 with T1 ∩ T2 one-dimensional, hence area zero.
Find the areas of T1, T2, check that they add to the area of T . Finally check with
your sketch of T to see if the one you found to be of larger area corresponds to
what you see in your sketch.

(4) Same Φ, T,D1, D2, T1, T2 as in last problem. Find
(a) Φ∗(dy ∧ dz)
(b)
∫
T

Φ∗(dy ∧ dz)
(c) For i = 1, 2 subdivide Di = Di,1 ∪Di,2 by the value of the second coordinate θ:

Di,1 = Di ∩ {−π/2 ≤ θ ≤ π/2} and Di,2 = Di ∩ {π/2 ≤ θ ≤ 3π/2}
Let Ti,j = Φ(Di,j) be the corresponding decomposition of T :

T = T1,1 ∪ T1,2 ∪ T2,1 ∪ T2,2

with all intersections zero or one-dimensional, hence area zero.
(i) Find the four values of∫

Ti,j

Φ∗(dy ∧ dz) for i, j = 1, 2

by computing the integrals of the form you found in part (a) over Di,j

(ii) Let py,z : T → R2 be projection on the (y, z)-plane: py,z(x, y, z) = (y, z),
Prove (briefly, say by looking at the sketch) that py,z|Ti,j : Ti,j → R2 is
bijective onto its image, with smooth inverse.

(iii) From the general theory it follows that∫
Di,j

Φ∗(dy ∧ dz) =

∫
Ti,j

(py,z)
∗(dy ∧ dz) = ±Area(py,z(Ti,j))

Find these projections py,z(Ti,j) (look at your sketch) and check this last
equation by using elementary geometry, then compare with your answer
in (i).


