MATH 3220-3 HOMEWORK 4

DUE APRIL 3

Fix
$$0 < b < a$$
 and define $\Phi : \mathbb{R}^2 \to \mathbb{R}^3$ by $\Phi(\phi, \theta) = (x(\phi, \theta), y(\phi, \theta), z(\phi, \theta))$ where
 $x = (a + b \cos \phi) \cos \theta$
 $y = (a + b \cos \phi) \sin \theta$
 $z = b \sin \phi$

This is a parametrized surface in \mathbb{R}^3 . Let *T* denote its image, which is a *torus*. By periodicity, $T = \Phi(D)$ where $D = I_1 \times I_2$ for any two intervals I_1, I_2 of length 2π . We have many choices for *D*. In each problem we may make a different choice as convenient.

- (1) (a) Sketch T. Show the meaning of a, b, ϕ, θ in your sketch.
 - (b) Prove that T is the same as the set of solutions of g(x, y, z) = 0 where

$$g(x, y, z) = (x^{2} + y^{2} + z^{2} - a^{2} - b^{2})^{2} - 4a^{2}(b^{2} - z^{2})$$

- (c) Show that the gradient $\nabla_{(x,y,z)}g \neq 0$ at every (x,y,z) with g(x,y,z) = 0
- (d) What would happen if 0 < b = a? Would the last statement still be true?
- (e) What would happen if 0 = b < a?
- (f) g(x, y, z) is an equation of degree 4 in x, y, z. Is it possible to define T by equations of smaller degree?
- (2) With the same meaning of Φ , D and T, let $f : T \to \mathbb{R}$ be the function f(x, y, z) = x for $(x, y, z) \in T$. (See Rudin, exercise 9.12, with different notation).
 - (a) Use the parametrization Φ to find the critical points of f on T. In other words, find the points in D (say, take $D = [0, 2\pi] \times [0.2\pi]$) where the gradient of $f \circ \Phi$ vanishes.
 - (b) For each critical point that you found, show that it is non-degenerate and decide if it is a local maximum, local minimum, or saddle point.
 - (c) Find the critical points of f by applying the method of Lagrange multipliers to f and the equation g = 0 above. Check that you got the same critical points as those that you found using the parametrization.
- (3) With the same meaning of Φ , D, T:
 - (a) For each $p = (\phi, \theta) \in D$, Find

$$\frac{\partial \Phi}{\partial \phi}(p) \wedge \frac{\partial \Phi}{\partial \theta_1}(p) \in \Lambda^2(\mathbb{R}^3)$$

- (b) Find the norm $\left| \frac{\partial \Phi}{\partial \phi} \wedge \frac{\partial \Phi}{\partial \theta} \right|$.
- (c) Use the formula (to be discussed in class) for the area of a parametrized surface $\Phi: D \to \mathbb{R}^n$

$$Area = \int_{D} \left| \frac{\partial \Phi}{\partial \phi} \wedge \frac{\partial \Phi}{\partial \theta} \right| d\phi d\theta$$

to find the area of T. Any surprises? Any remarks?

(d) Take $D = [-\pi/2, 3\pi/2] \times [-\pi/2, 3\pi/2]$, and subdivide D into D_1 and D_2 by the value of the first coordinate ϕ , that is, define

$$D_1 = D \cap \{-\pi/2 \le \phi \le \pi/2\}, \quad D_2 = D \cap \{\pi/2 \le \phi \le 3\pi/2\}$$

Let

$$T_1 = \Phi(D_1), \ T_2 = \Phi(D_2)$$

so that $T = T_1 \cup T_2$ with $T_1 \cap T_2$ one-dimensional, hence area zero. Find the areas of T_1, T_2 , check that they add to the area of T. Finally check with your sketch of T to see if the one you found to be of larger area corresponds to what you see in your sketch.

(4) Same $\Phi, T, D_1, D_2, T_1, T_2$ as in last problem. Find

(a)
$$\Phi^*(dy \wedge dz)$$

- (b) $\int_T \Phi^*(dy \wedge dz)$
- (c) For i = 1, 2 subdivide $D_i = D_{i,1} \cup D_{i,2}$ by the value of the second coordinate θ :

 $D_{i,1} = D_i \cap \{-\pi/2 \le \theta \le \pi/2\}$ and $D_{i,2} = D_i \cap \{\pi/2 \le \theta \le 3\pi/2\}$

Let $T_{i,j} = \Phi(D_{i,j})$ be the corresponding decomposition of T:

$$T = T_{1,1} \cup T_{1,2} \cup T_{2,1} \cup T_{2,2}$$

with all intersections zero or one-dimensional, hence area zero.

(i) Find the four values of

$$\int_{T_{i,j}} \Phi^*(dy \wedge dz) \quad \text{for } i, j = 1, 2$$

by computing the integrals of the form you found in part (a) over $D_{i,j}$

- (ii) Let $p_{y,z} : T \to \mathbb{R}^2$ be projection on the (y, z)-plane: $p_{y,z}(x, y, z) = (y, z)$, Prove (briefly, say by looking at the sketch) that $p_{y,z}|_{T_{i,j}} : T_{i,j} \to \mathbb{R}^2$ is bijective onto its image, with smooth inverse.
- (iii) From the general theory it follows that

$$\int_{D_{i,j}} \Phi^*(dy \wedge dz) = \int_{T_{i,j}} (p_{y,z})^*(dy \wedge dz) = \pm Area(p_{y,z}(T_{i,j}))$$

Find these projections $p_{y,z}(T_{i,j})$ (look at your sketch) and check this last equation by using elementary geometry, then compare with your answer in (i).