MATH 3220-3 HOMEWORK 3

DUE MARCH 6

(1) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Prove the following statements:

- (a) f is continuous on \mathbb{R}^2 .
- (b) ∂f/∂x and ∂f/∂y exist on all of R² and are bounded.
 (c) At (0,0) the directional derivatives D_vf exist for all unit vectors v ∈ R².
- (d) f is not differentiable at (0, 0).
- (2) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{x^4}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Prove, directly from the definition of differentiability, that f is differentiable at (0,0), and find its derivative $d_{(0,0)}f$.
- (b) Show that the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous on all of \mathbb{R}^2 . Observe that this gives another proof of the differentiability of f at (0,0).
- (3) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x,y) = (x^2 - y^2, 2xy) = (u,v)$$

- (a) Observe that f(-x, -y) = f(x, y), so f is not (globally) injective.
- (b) Use the Inverse Function Theorem to prove that if $(x_0, y_0) \neq (0, 0)$, then (x_0, y_0) has a neighborhood U with the property that f maps U bijectively to its image V = f(U).
- (c) Prove that (0,0) has no such neighborhood.
- (d) Find explicit formulas for a local inverse of $f|_U$ where U is a neighborhood of (1, 0).
- (4) (Rudin Chap 9, Ex 16) Let

$$f(t) = \begin{cases} t + 2 t^2 \sin(\frac{1}{t}) & \text{if } t \neq 0, \\ 0 & \text{if } t = 0. \end{cases}$$

Show

- (a) f is differentiable.
- (b) f'(0) = 1.
- (c) f' is bounded on (-1, 1).
- (d) f is not one-to-one in any neighborhood of 0. Thus the continuity of f' is needed in the inverse function theorem.
- (5) Let $U \subset \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}$ be of class \mathcal{C}^1 (continuously differentiable). Recall that if $p \in U$ and v is a unit vector, the directional derivative of f at p in *direction* v, $(D_v f)(p)$ is defined to be

$$D_v f(p) = \left(\frac{d}{dt}f(p+tv)\right)|_{t=0} = d_p f(v) = \nabla_p f \cdot v$$

the second equality by the chain rule, the third the definition of the gradient. A point $p \in U$ is called a *critical point of* f if $d_p f = 0 \iff \nabla_p f = 0$

- (a) Prove that if p is a local maximum of f, then it is a critical point of f. Same for a local minimum.
- (b) (This is a quick explanation of the Lagrange multiplier method. More details later in class)

If $g: U \to \mathbb{R}$ is also \mathcal{C}^1 , if $G = \{p \in U : g(p) = 0\}$ and $d_pg \neq 0$ for all $p \in G$, then the implicit function theorem can be used to rigorously define critical points of the restriction $f|_G$ and to prove that a local maximum or minimum of this restriction is a critical point. Moreover, there is a useful criterion for $p_0 \in G$ to be critical for $f|_G$, the Lagrange multiplier method:

 $p_0 \in G$ is critical for $f|_G \iff \exists \lambda \in \mathbb{R}$ s.t. $\nabla_{p_0} f = \lambda \nabla_{p_0} g$.

Since, by assumption, $\nabla_p g \neq 0$ for all $p \in G$, the orthogonal complement $\nabla_p g^{\perp}$ is the *tangent space to G at p* and the Lagrange multiplier condition is equivalent to

 $\nabla_{p_0} f$ is perpendicular to $(\nabla_{p_0} g)^{\perp}$

or, briefly, $\nabla_{p_0} f$ is perpendicular to G at p_0 . Let's take all this for granted.

(c) Let $x_0 \in \mathbb{R}^n$ and let $f: \mathbb{R}^n \to \mathbb{R}$ be square distance from x_0 :

$$f(x) = |x - x_0|^2 = (x - x_0) \cdot (x - x_0)$$

where $u \cdot v$ is the usual dot product of vectors in \mathbb{R}^n . Find $\nabla_x f$. Suggestion: Expand $(x + h - x_0) \cdot (x + h - x_0)$ and compute $d_x f(h)$ directly from the definition of $d_x f$.

(d) As above, let $g : \mathbb{R}^n \to \mathbb{R}$ be \mathcal{C}^1 , let $G = \{g = 0\}$ and suppose $\nabla_p g \neq 0$ for all $p \in G$. Suppose $x_0 \notin G$ and suppose $x_1 \in G$ minimizes the distance $|x - x_0|$ for $x \in G$. Prove that $x_1 - x_0$ is perpendicular to G.

Comment: We have used this in the past for *g* a linear function.