MATH 3220-3 HOMEWORK 3

DUE MARCH 6

(1) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Prove the following statements:
(a) f is continuous on \mathbb{R}^{2}.
(b) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist on all of \mathbb{R}^{2} and are bounded.
(c) At $(0,0)$ the directional derivatives $D_{v} f$ exist for all unit vectors $v \in \mathbb{R}^{2}$.
(d) f is not differentiable at $(0,0)$.
(2) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{x^{4}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Prove, directly from the definition of differentiability, that f is differentiable at $(0,0)$, and find its derivative $d_{(0,0)} f$.
(b) Show that the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous on all of \mathbb{R}^{2}. Observe that this gives another proof of the differentiability of f at $(0,0)$.
(3) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)=(u, v)
$$

(a) Observe that $f(-x,-y)=f(x, y)$, so f is not (globally) injective.
(b) Use the Inverse Function Theorem to prove that if $\left(x_{0}, y_{0}\right) \neq(0,0)$, then $\left(x_{0}, y_{0}\right)$ has a neighborhood U with the property that f maps U bijectively to its image $V=f(U)$.
(c) Prove that $(0,0)$ has no such neighborhood.
(d) Find explicit formulas for a local inverse of $\left.f\right|_{U}$ where U is a neighborhood of $(1,0)$.
(4) (Rudin Chap 9, Ex 16) Let

$$
f(t)= \begin{cases}t+2 t^{2} \sin \left(\frac{1}{t}\right) & \text { if } t \neq 0 \\ 0 & \text { if } t=0\end{cases}
$$

Show
(a) f is differentiable.
(b) $f^{\prime}(0)=1$.
(c) f^{\prime} is bounded on $(-1,1)$.
(d) f is not one-to-one in any neighborhood of 0 . Thus the continuity of f^{\prime} is needed in the inverse function theorem.
(5) Let $U \subset \mathbb{R}^{n}$ be open and let $f: U \rightarrow \mathbb{R}$ be of class \mathcal{C}^{1} (continuously differentiable). Recall that if $p \in U$ and v is a unit vector, the directional derivative of f at p in direction $v,\left(D_{v} f\right)(p)$ is defined to be

$$
D_{v} f(p)=\left.\left(\frac{d}{d t} f(p+t v)\right)\right|_{t=0}=d_{p} f(v)=\nabla_{p} f \cdot v
$$

the second equality by the chain rule, the third the definition of the gradient. A point $p \in U$ is called a critical point of f if $d_{p} f=0 \Longleftrightarrow \nabla_{p} f=0$
(a) Prove that if p is a local maximum of f, then it is a critical point of f. Same for a local minimum.
(b) (This is a quick explanation of the Lagrange multiplier method. More details later in class)
If $g: U \rightarrow \mathbb{R}$ is also \mathcal{C}^{1}, if $G=\{p \in U: g(p)=0\}$ and $d_{p} g \neq 0$ for all $p \in G$, then the implicit function theorem can be used to rigorously define critical points of the restriction $\left.f\right|_{G}$ and to prove that a local maximum or minimum of this restriction is a critical point. Moreover, there is a useful criterion for $p_{0} \in G$ to be critical for $\left.f\right|_{G}$, the Lagrange multiplier method:

$$
p_{0} \in G \text { is critical for }\left.f\right|_{G} \Longleftrightarrow \exists \lambda \in \mathbb{R} \text { s.t. } \nabla_{p_{0}} f=\lambda \nabla_{p_{0}} g .
$$

Since, by assumption, $\nabla_{p} g \neq 0$ for all $p \in G$, the orthogonal complement $\nabla_{p} g^{\perp}$ is the tangent space to G at p and the Lagrange multiplier condition is equivalent to

$$
\nabla_{p_{0}} f \text { is perpendicular to }\left(\nabla_{p_{0}} g\right)^{\perp}
$$

or, briefly, $\nabla_{p_{0}} f$ is perpendicular to G at p_{0}.
Let's take all this for granted.
(c) Let $x_{0} \in \mathbb{R}^{n}$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be square distance from x_{0} :

$$
f(x)=\left|x-x_{0}\right|^{2}=\left(x-x_{0}\right) \cdot\left(x-x_{0}\right)
$$

where $u \cdot v$ is the usual dot product of vectors in \mathbb{R}^{n}. Find $\nabla_{x} f$.
Suggestion: Expand $\left(x+h-x_{0}\right) \cdot\left(x+h-x_{0}\right)$ and compute $d_{x} f(h)$ directly from the definition of $d_{x} f$.
(d) As above, let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be \mathcal{C}^{1}, let $G=\{g=0\}$ and suppose $\nabla_{p} g \neq 0$ for all $p \in G$. Suppose $x_{0} \notin G$ and suppose $x_{1} \in G$ minimizes the distance $\left.\mid x-x_{0}\right]$ for $x \in G$. Prove that $x_{1}-x_{0}$ is perpendicular to G.
Comment: We have used this in the past for g a linear function.

