MATH 3220-3 HOMEWORK 2

DUE FEBRUARY 11

(1) (This problem and the next are part of problems 12,13 of Rudin, Chapter 8). Find the Fourier coefficients {c_n} and Fourier series ∑[∞]_{-∞} c_ne^{inx} of the following two functions:
 (a) For fixed δ > 0 let

$$f(x) = \begin{cases} 1 & \text{if } |x| < \delta, \\ 0 & \text{if } \delta < |x| < \pi. \end{cases}$$

on $[-\pi, \pi]$ and extend to a periodic function of period 2π to all of \mathbb{R} . (b) Let f(x) = x on $[0, 2\pi)$ and extend to a function periodic of period 2π to all of \mathbb{R} .

(2) (a) Write down Parseval's identity (Rudin, Theorem 8.16)

$$\sum_{-\infty}^{\infty} |c_n|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$

for each function.

(b) Check that for the first function it gives

$$\sum_{n=1}^{\infty} \frac{\sin^2(n\delta)}{n^2\delta} = \frac{\pi - \delta}{2},$$

and for the second

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

- (c) Put $\delta = \frac{\pi}{2}$ in the identity for the first function. Write down explicitly what it gives, and check that it is compatible with the answer for the second function.
- (3) (Rudin, Chapter 8, Problem 16) A variation on Fejer's theorem: Prove that if f is Riemann integrable and there is an x with the property that the one-sided limits $f(x^+)$, $f(x^-)$ exist, then

$$\lim_{N \to \infty} \sigma_N(f; x) = \frac{1}{2} (f(x^+) + f(x^-)),$$

where

$$\sigma_N(f;x) = \frac{s_0(f,x) + s_1f(x) + \dots + s_N(f;x)}{N+1}$$

is the sequence of Cesaro means of the Fourier sums $s_N(f, x)$.

Suggestion: Accept all the details of the proof of Fejer's theorem in Rudin, Chap 8, Exercise 15. In particular, accept that

$$\sigma_N(f,x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) K_N(t) dt$$

where

$$K_N(t) = \frac{1}{N+1} \frac{1 - \cos((N+1)t)}{1 - \cos(t)}$$

has properties (a),,(b),(c). The proof of $\sigma_N(f, x) \to f(x)$ uniformly is based on the identity

$$f(x) - \sigma_N(f, x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x) - f(x - t)) K_N(t) dt$$

and the continuity of f. Find a suitable substitute for this identity that will give the result we want when we only know the existence of one-sided limits.

(4) (Rudin, Chp 8, ex 19): Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous, $f(x + 2\pi) = f(x)$, and suppose $\alpha \in \mathbb{R}$ and $\frac{\alpha}{\pi}$ is irrational. Prove that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x + n\alpha) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt$$

Suggestion: Do it first for e^{imx} , $m \in \mathbb{Z}$.

(5) Recall the Γ -function

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

One way to compute $\Gamma(\frac{1}{2}) = \int_0^\infty t^{\frac{1}{2}} e^{-t} dt$ is to make the substitution $t = s^2$, which gives $\Gamma(\frac{1}{2}) = \int_{-\infty}^{\infty} e^{-s^2} ds$. This can be computed by the trick of relating it to an integral over \mathbb{R}^2 and using polar coordinates:

$$(\int_{-\infty}^{\infty} e^{-x^2} dx)^2 = \int_{-\infty}^{\infty} e^{-}(x^2 + y^2) dx dy = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2} r dr d\theta = \pi$$

Use this same idea to compute

- s_{n-1} = the volume of Sⁿ⁻¹ = {x ∈ ℝⁿ : ||x|| = 1}
 b_n = the volume of the unit ball Bⁿ = {x ∈ ℝⁿ : ||x|| ≤ 1} in terms of the Gamma function.

Suggestion: Start from

$$\pi^{\frac{n}{2}} = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} e^{-(x_1^2 + \dots + x_n^2)} dx_1 \dots dx_n = \int_{S^{n-1}} \int_0^{\infty} e^{-r^2} r^{n-1} dr d\Theta$$