MATH 3220-3 HOMEWORK 1

DUE JANUARY 23

- (1) Let $f_n(x) = x^n \in \mathcal{C}([0,1])$
 - (a) Prove that the sequence {f_n} has no convergent subsequence (in the norm of C([0, 1])).
 (b) Use this to prove that the unit ball {f ∈ C([0, 1]) : ||f|| ≤ 1} is not compact.
- (2) (a) Let (X, d) be a metric space and let K ⊂ X be a compact subset. Prove that for all ε > 0 there are finitely many points x₁,..., x_n ∈ K so that, for every x ∈ K there exists an i, i = 1,..., n, such that d(x, x_i) < ε
 - (b) Use this to prove that, if $K \subset C([0, 1])$ is compact, then K is equicontinuous.
- (3) Recall the norms $||f||_1 = \int_0^1 |f(x)| \, dx$ and $||f||_{\infty} = \sup_{x \in X} \{|f(x)|\}$ on $\mathcal{C}([0, 1])$.
 - (a) Prove that $||f||_1 \le ||f||_\infty$ for all $f \in \mathcal{C}([0,1])$
 - (b) Prove that there is no constant C > 0 such that $||f||_{\infty} \leq C||f||_1$ holds for all $f \in C([0,1])$ by producing a sequence $f_n \in C([0,1])$ with $||f_n||_{\infty} \to \infty$ and $||f_n||_1 = 1$
 - (c) Prove that C([0, 1]) with norm $||f||_1$ is not a complete metric space. Observe that this gives another proof of (b).

Suggestion Consider (in C([-1, 1]) for simpler formulas) the sequence

$$f_n(x) = \begin{cases} -1 & \text{if } -1 \le x \le 1/n, \\ nx & \text{if } -1/n \le x \le 1/n, \\ 1 & \text{if } 1/n \le x \le 1. \end{cases}$$

(4) This problem and the next are part of Rudin, Chapter 7, Exercise 4. Let

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2 x}$$

(a) For which $x \in \mathbb{R}$ does the series converge?

Note: if for a given $x \in \mathbb{R}$ some term in the series is not defined, then the series does not converge for that x.

- (b) For which $x \in \mathbb{R}$ does it converge absolutely?
- (c) Is f bounded?
- (5) Using the same series as in the last problem
 - (a) For which intervals in \mathbb{R} does the series converge uniformly?
 - (b) For which intervals in \mathbb{R} does the series converge, but not uniformly?