MATH 3220-3 HOMEWORK 1

DUE JANUARY 23

(1) Let $f_{n}(x)=x^{n} \in \mathcal{C}([0,1])$
(a) Prove that the sequence $\left\{f_{n}\right\}$ has no convergernt subsequence (in the norm of $\mathcal{C}([0,1])$).
(b) Use this to prove that the unit ball $\{f \in \mathcal{C}([0,1]):\|f\| \leq 1\}$ is not compact.
(2) (a) Let (X, d) be a metric space and let $K \subset X$ be a compact subset. Prove that for all $\epsilon>0$ there are finitely many points $x_{1}, \ldots, x_{n} \in K$ so that, for every $x \in K$ there exists an $i, i=1, \ldots, n$, such that $d\left(x, x_{i}\right)<\epsilon$
(b) Use this to prove that, if $K \subset \mathcal{C}([0,1])$ is compact, then K is equicontinuous.
(3) Recall the norms $\|f\|_{1}=\int_{0}^{1}|f(x)| d x$ and $\|f\|_{\infty}=\sup _{x \in X}\{\mid f(x \mid)\}$ on $\mathcal{C}([0,1])$.
(a) Prove that $\|f\|_{1} \leq\|\mid f\|_{\infty}$ for all $f \in \mathcal{C}([0,1])$
(b) Prove that there is no constant $C>0$ such that $\|f\|_{\infty} \leq C\|f\|_{1}$ holds for all $f \in$ $\mathcal{C}([0,1])$ by producing a sequence $f_{n} \in \mathcal{C}([0,1])$ with $\left\|f_{n}\right\|_{\infty} \rightarrow \infty$ and $\left\|f_{n}\right\|_{1}=1$
(c) Prove that $\mathcal{C}([0,1])$ with norm $\|f\|_{1}$ is not a complete metric space. Observe that this gives another proof of (b).
Suggestion Consider (in $\mathcal{C}([-1,1])$ for simpler formulas) the sequence

$$
f_{n}(x)= \begin{cases}-1 & \text { if }-1 \leq x \leq 1 / n \\ n x & \text { if }-1 / n \leq x \leq 1 / n \\ 1 & \text { if } 1 / n \leq x \leq 1\end{cases}
$$

(4) This problem and the next are part of Rudin, Chapter 7, Exercise 4. Let

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{1+n^{2} x}
$$

(a) For which $x \in \mathbb{R}$ does the series converge?

Note: if for a given $x \in \mathbb{R}$ some term in the series is not defined, then the series does not converge for that x.
(b) For which $x \in \mathbb{R}$ does it converge absolutely?
(c) Is f bounded?
(5) Using the same series as in the last problem
(a) For which intervals in \mathbb{R} does the series converge uniformly?
(b) For which intervals in \mathbb{R} does the series converge, but not uniformly?.

