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Inverse Function Theorem

I U ⇢ Rn open, f : U ! Rn continuously differentiable.

I Suppose x0 2 U and the derivative dx0
f 2 L(Rn) is

invertible.

I Then there are neighborhoods Nx0
of x0 and Ny0

of

y0 = f (x0) such that

I f (Nx0
) = Ny0

and f : Nx0
! Ny0

is bijective.

I The map g : Ny0
! Nx0

inverse to f |Nx0
is continuously

differentiable





Some remarks
I The hypothesis dx0

f invertible is equivalent to the

Jacobian matrix ⇣ @fi
@xj

(x0)
⌘

being an invertible n by n matrix.

I From g(f (x)) = x for x 2 Nx0
and the chain rule if

follows that

df (x)g = (dxf )�1
for all x 2 Nx0

I Equivalent statement

dyg = (dg(y)f )�1
for all y 2 Ny0





Example

I f : R2 ! R2 defined by

f (s, t) = (s cos(t), s sin(t)) = (x , y) (polar coordinates)

I Jacobian matrix

✓
@x
@s

@x
@t

@y
@s

@y
@t

◆
=

✓
cos t �s sin t
sin t s cos t

◆

I Invertible if and only if s 6= 0 (determinant = s)



I f (s, t + 2⇡) = f (s, t), so f not globally invertible.

I If (s0, t0) has s0 > 0, restriction to

(0,1)⇥ (t0 � ⇡, t0 + ⇡) is invertible.





Proof of the one variable theorem (n = 1)

I If f 0(x0) 6= 0, say f 0(x0) > 0, there is an open interval J
with x0 2 J and f 0(x) > f 0(x0)

2
> 0 for all x 2 J.

I Use

f (x2)� f (x1) = f 0(⇠)(x2 � x1)

for all x1 < x2 in J and for some ⇠ = ⇠(x1, x2) between

x1 and x2.

I Let a = f 0(0)
2

. Get

f (x2)� f (x1) > a(x2 � x1) for all x1 < x2 in J,





We get:

I f is injective, so f�1 : f (J) ! J exists.

I f�1 is continuous:

Let y = f (x). Then above inequality same as

f�1(y2)� f�1(y1) <
1

a
(y2 � y1)

I f (J) is an interval: use Intermediate Value Theorem.



I f�1 is C1: Write original equation as

y2 � y1 = f 0(⇠)(f�1(y2)� f�1(y1))

for some ⇠ between f�1(y1) and f�1(y2)

I Let y2 ! y1. Get

(f�1)0(y) =
1

f 0(f�1(y))





Proof in n > 1 variables

I For n > 1 it is possible to use the existence of a

continuous map A : U ⇥ U ! L(Rn) such that

f (x2)� f (x1) = A(x1, x2)(x2 � x1)

to prove the “easier ” statements as in the

one-variable case.



I A possible choice of A is

A(x1, x2) =

Z
1

0

d�(t)f dt

where �(t) = �x1,x2
(t) = (1 � t)x1 + tx2 is the straight

line segment from x1 to x2.

.



I Will need A(x1, x2) to be defined only for pairs

(x1, x2) 2 U ⇥ U with |x2 � x1| small, so only “local

convexity” of U is needed. OK for U open.

I Observe that

A(x , x) = dxf





Proof could proceed as follows:

I Let a = 2||(dx0
f )�1|| = 2||A(x0, x0)�1||.

I Since A is continuous, the set ⌦ ⇢ L(Rn) is open, and

A(x0, x0) = dx0
F 2 ⌦, x0 has a nbhd N such that

A(x1, x2) is invertible for all (x1, x2) 2 N ⇥ N.

I Since inversion and norm are continuous, there exists

a nbhd Nx0
of x0, contained in N, so that

||A(x1, x2)
�1|| < a for all x1, x2 2 Nx0

(a as above)



Proof of injectivity

I Let yi = f (xi). Then y2 � y1 = A(x1, x2)(x2 � x1)

I Apply A(x1, x2) to both sides:

A(x1, x2)
�1(y2 � y1) = x2 � x1

I Norms:

|x2 � x1|  ||A(x1, x2)
�1|||y2 � y1|  a |y2 � y1|

I Thus f is injective on Nx0
, and its inverse

f�1 : f (Nx0
) ! Nx0

is continuous.





Image is open

I Proving f (Nx0
) is open in Rn is more difficult for n > 1.

I Intermediate value theorem rests on:

if J is an open interval in R and x 2 J, then J \ {x} is

disconnected.

I If n � 2, B ⇢ Rn is an open ball and x 2 B, then

B \ {x} is connected.





I Need more topology.

I Rudin appeals to the contraction mapping theorem:

I If (X , d) is a complete metric space, f : X ! X is a

contraction, that is, there exists a constant C < 1

such that

d(f (x), f (y))  C d(x , y) for all x , y 2 X

Then f has a unique fixed point, that is, there is a

unique x0 2 X such that f (x0) = x0





Proof of the Contraction Mapping Theorem

I f has at most one fixed point:

If f (x1) = x1 and f (x2) = x2, then

d(x1, x2))  C d(x1, x2) ) d(x1, x2) = 0



I f has a fixed point:

Pick x1 2 X and let xn = f n�1(x1) .

Since xn+1 = f (xn), d(xn+1, xn) < Cn�1d(x2, x1)
if m < n, then d(xn, xm) 

d(xm+1, xm)+· · ·+d(xn, xn�1) < (Cm�1+· · ·+Cn�2)d(x2, x1)

) {xn} is a Cauchy sequence.

I Let x0 = lim{xn}. Then

f (x0) = lim{xn+1} = lim{xn} = x0



Example of Contraction

f : Rn ! Rn of class C1 and such that

||dxf ||  C

for all x 2 Rn and for some constant C < 1.



Convert IFT to a FPT

I For IFT need to solve an equation

f (x) = y

I Rewrite

x = x + (f (x)� y)

I More generally

x = x + L(f (x)� y)

where L is an invertible linear transformation.



I For each y 2 Rn and for each invertible L 2 L(Rn),
define a map

� = �y ,L : U ! Rn

by

�(x) = x + L(f (x)� y)

I Then f (x) = y () �(x) = x

I Challenge: choose L so that we get a contraction of

an appropriate complete metric space.





Inverse Function Theorem

I U ⇢ Rn open, f : U ! Rn continuously differentiable.

I Suppose x0 2 U and the derivative dx0f 2 L(Rn) is
invertible.

I Then there are neighborhoods Nx0 of x0 and Ny0 of
y0 = f (x0) such that

I f (Nx0) = Ny0 and f : Nx0 ! Ny0 is bijective.

I The map g : Ny0 ! Nx0 inverse to f |Nx0
is continuously

differentiable





I Let A = dx0f and let a = ||A�1||
I Let

N = Nx0 = {x 2 U : ||dxf � A|| < 1
2a

}



Recall: A invertible, ||B|| < 1
a ) A � B invertible.



I Recall that for any fixed invertible L 2 L(Rn),

f (x) = y () x = x + L(y � f (x))

I In particular

f (x) = y () x = x + A�1(y � f (x))



I For each y 2 Rn, define a map � = �y : U ! Rn by

�y(x) = x + A�1(y � f (x))

I Then f (x) = y () �y(x) = x



I x 2 N ) ||dx�||  1
2



I �y : N ! Rn satisfies

|�y(x2)� �y(x1)| 
1
2
|x2 � x1|

I �y : N ! Rn is a contraction
(Lipschitz with Lipschitz constant < 1.)



I �y : N ! Rn is injective



I Note that for fixed x

�y2(x)� �y1(x) = A�1(y2 � y1)

I Thus
|�y2(x)� �y1(x)|  a |y2 � y1|



I Want to prove f (N) is open in Rn.
I Let x1 2 N and y1 = f (x1).
I Need to find ⇢ > 0 so that |y � y1| < ⇢ ) y = f (x) for

some x 2 N.



I Fix r > 0 so that the closed ball B(x1, r) ⇢ N

I Want: ⇢ = r
2a works.

I First

|y � y1| <
r

2a
) |�y(x1)� �y1(x1)| <

r
2



I Next

|x � x1| < r ) |�y(x)� �y(x1)| 
|x2 � x1|

2

I Together:

|y � y1| <
r

2a
and |x � x1|  r ) |�y(x)� x1|  r



I Conclusion:

|y � y1| <
r

2a
) �y : B(x1, r) ! B(x1, r)

I �y is a contraction of the complete metric space
B(x1, r)

I Thus there is a unique x 2 B(x1, r) with �y(x) = x

















Implicit Function Theorem

I If A 2 L(Rm ⇥ Rn,Rn), write

A = (Ax Ay)

Where Ax 2 L(Rm,Rn) and Ay 2 L(Rn,RnZ ).

I So, if (v ,w) 2 Rm ⇥ Rn, v 2 Rm,w 2 Rn

A(v ,w) = Axv + Ayw





I If U ⇢ Rm ⇥ Rn is open and f : U ! Rn is
differentiable,(x0, y0) 2 U.

d(x0,y0)f = ((d(x0,y0)f )x (d(x0,y0)f )y)) = (
@f
@x

(x0, y0)
@f
@y

(x0, y0))

I Notation not standard
I @f

@x and @f
@y stand for blocks of the Jacobian matrix of f .





Theorem

I f : U ! Rn as above, f of class C1.
I (x0, y0) 2 U, with x0 2 Rm and y0 2 Rn

I Suppose that
I f (x0, y0) = 0
I @f

@y (x0, y0) 2 L(Rn) is invertible
I Then there exist

I Nbs Nx ,Ny of x0, y0 respectively, with Nx ⇥ Ny ⇢ U,
I A map � : Nx ! Ny of class C1,

I Such that

{(x , y) 2 Nx⇥Ny : f (x , y) = 0} = {(x ,�(x)) : x 2 Nx}



Picture for m = n = 1

f (x , y) = 0 defines y implicitly as a function of x ,

namely y = �(x)





Proof for m = n = 1





Same for m arbitrary n = 1



Examples



Inverse Func Thm ) Implicit Func Thm

I Define F : U ! Rm ⇥ Rn by

F (x , y) = (x , f (x , y))

I Then

d(x0,y0)F =

✓
I 0
@f
@x

@f
@y

◆

is invertible.



I Inverse Function Thm gives local inverse G defined
near F (x0, y0) = (x0, 0)

I Check G(u, v) = (u, g(u, v)) with f (u, g(u, v)) = v
I Let �(x) = g(x , 0).





Implicit Func Thm ) Inverse Func Thm

I Let f : U ! Rn and y0 2 U as in Inverse function thm.
I Define F : Rn ⇥ Rn by

F (x , y) = f (y)� x

I Then F (f (y0), y0) = 0 and @F
@y (f (y0), y0) = dy0f

invertible.
I Then F (x ,�(x)) = f (�(x))� x = 0 , f (�(x)) = x





Critical Points

I U ⇢ Rn open, f : U ! R differentiable.

I p 2 U is called a critical point of f if dpf = 0

I Equivalently: @f
@x1

(p) · · · = @f
@xn

(p) = 0

I Equivalently: Gradient rpf = 0.

I Know (homework): p a local maximum (or min) for
f ) p is critical point for f .





Non-singular hypersurfaces

I Suppose g : U ! R of class C1.

I The set {g = 0} is called a hypersurface in U.

I Suppose that dpg 6= 0 for all p 2 {g = 0}.

I This means that for each p 2 {g = 0}, for at least one
i 2 {1, . . . , n}, @g

@xi
6= 0.

I By the implicit function thm, each p 2 {g = 0} has a
neighborhod Np for which one xi is a C1-function of
the remaining ones.



I To avoid complicated notation, suppose @g
@xn

(p) 6= 0.

I The p has a nbd N = N1 ⇥ N2, N1 ⇢ Rn�1, N2 ⇢ R.
and a C1 function � : N1 ! N2 such that

{g = 0} \ (N1 ⇥ N2)

is the graph of �

{(x1, . . . , xn�1,�(x1, . . . , xn�1)) : (x1, . . . , xn�1) 2 N1}



I Conclusion: {g = 0} \ (N1 ⇥ N2) is in bijective, C1

correspondence with the open set N1 ⇢ Rn�1

I Locally {g = 0} is an open set in Rn�1.

I Called non-singular hypersuface for this reason.

I Locally looks like Rn�1 ⇢ Rn



Examples









Critical points of f |{g=0}




