Foundations of Analysis II Week 8

Domingo Toledo

University of Utah
Spring 2019
HW3 reposted

Inverse Function Theorem

Some remarks

- The hypothesis $d_{x_{0}} f$ invertible is equivalent to the

$$
\begin{aligned}
& \text { From } g(f(x))=x \text { for } x \in N_{x_{0}} \text { and the chain rule if } \\
& \text { follows that } \\
& \left(d_{y} f^{-1}=f_{f}^{\prime-1}\right)<\left(d_{f}^{\prime}\right)
\end{aligned}
$$

$8, t$

$$
d_{(0, t)}^{\theta_{1} t} f=\left(\begin{array}{cc}
e^{\frac{1}{t}} & 0 \\
N^{n} & 0 \\
d & d_{j f l}(e n \\
\left.d C^{2}\right)
\end{array} \quad S>0\right.
$$

Example

- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(s, t)=(s \cos (t), s \sin (t))=(x, y) \quad \text { (polar coordinates) }
$$

- Jacobian matrix

$$
\left(\begin{array}{cc}
\frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\
\frac{\partial y}{\partial s} & \frac{\partial y}{\partial t}
\end{array}\right)=\left(\begin{array}{cc}
\cos t & -s \sin t \\
\sin t & s \cos t
\end{array}\right) \longleftarrow
$$

- Invertible if and only if $s \neq 0$ (determinant $=s$)

$$
\left(\begin{array}{ll}
\text { ert } & 0 \\
\sin t & 0
\end{array}\right)
$$

- $f(s, t+2 \pi)=f(s, t)$, so f not globally invertible.
- If $\left(s_{0}, t_{0}\right)$ has $s_{0}>0$, restriction to $(0, \infty) \times\left(t_{0}-\pi, t_{0}+\pi\right)$ is invertible.

on $S \gg^{6}$ mar is locally invettite
$S=0$ not inverti26,

$$
\begin{aligned}
& \text { rimerti26) } \\
& \text { even locally }
\end{aligned}
$$

Proof of the one variable theorem $(n=1)$

$$
\text { Jacockeve }=\left(f^{\prime}\left(x_{0}\right)\right)
$$

- If $f^{\prime}\left(x_{0}\right) \neq 0$, say $f^{\prime}\left(x_{0}\right)>0$, there is an open interval J _ with $x_{0} \in J$ and $f^{\prime}(x)>\frac{f^{\prime}\left(x_{0}\right)}{2}$; >0 for all $x \in J$.
- Use

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(\xi)\left(x_{2}-x_{1}\right)
$$

for all $x_{1}<x_{2}$ in J and for some $\xi=\xi\left(x_{1}, x_{2}\right)$ between x_{1} and x_{2}.

- Let $a=\frac{f^{\prime}(0)}{2}$. Get

$$
\begin{aligned}
& \frac{f\left(x_{2}\right)-f\left(x_{1}\right)>a\left(x_{2}-x_{1}\right) \text { for all } x_{1}<x_{2} \text { in } J,}{y_{1}=f\left(x_{1}\right)}
\end{aligned}
$$

$$
y_{2}=f\left(x_{1}\right)
$$

$$
\begin{aligned}
& y_{2}-y_{1}>a \in f^{-1}\left(\eta_{\eta}\right)_{2}-f^{-1}\left(y_{1}\right) \\
& f^{-1}\left(y_{2}\right)-f^{-1}(y) \subset 1 / a \\
& y_{1}, y_{2} \in f(J)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Connedecmess }
\end{aligned}
$$

 $f(J)$ in cometed if $y \notin f(J)$, Than $f(J)$ discomad

We get:

- f is injective, so $f^{-1}: f(J) \rightarrow J$ exists.
- f^{-1} is continuous:

Let $y=f(x)$. Then above inequality same as

$$
f^{-1}\left(y_{2}\right)-f^{-1}\left(y_{1}\right)<\frac{1}{a}\left(y_{2}-y_{1}\right)
$$

- $f(J)$ is an interval: use Intermediate Value Theorem.
- f^{-1} is \mathcal{C}^{1} : Write original equation as

$$
\text { for some }-\frac{y_{2}-y_{1}=f^{\prime}(\xi)\left(f^{-1}\left(y_{2}\right)-f^{-1}\left(y_{1}\right)\right)}{\text { between } f^{-1}\left(y_{1}\right) \text { and } f^{-1}\left(y_{2}\right)}
$$

- Let $y_{2} \rightarrow y_{1}$. Get

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

$$
\left.a\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \\
x_{1} \neq y_{2} \\
f^{\prime}\left(x_{1}\right) \\
x_{1}=x_{2}
\end{array}\right\} \frac{f d l_{1}}{\left[a\left(y_{1}, x\right)=f^{\prime}\left(y_{1}\right.\right.}\right]
$$

$$
\begin{aligned}
& f f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(\xi)\left(x_{2}-x_{1}\right) \\
& \frac{\left|f\left(x_{2}\right)-f\left(x_{1}\right)=\int_{\Delta x_{2}}^{*} f^{\prime}(t)^{\prime} d t\right|}{\left.\left.\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leq \operatorname{Man}\left(f^{\prime}(t) ; x_{1}, t \leq x_{0}\right)\right)\left(x_{2}-x_{1}\right)\right)} \\
& f\left(y_{2}\right)-f\left(x_{1}\right)=
\end{aligned}
$$

$\lambda(\epsilon)$

$$
=(1-k) y_{1}+t r_{2}
$$

$$
\begin{aligned}
& \frac{\left|f\left(x_{2}\right)-f\left(x_{1}\right)=\int_{\Delta x_{2}}^{*} f^{\prime}(t)^{\prime} d t\right|}{\left.\left.\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leq \operatorname{Man}\left(f^{\prime}(t) ; x_{1}, t \leq x_{0}\right)\right)\left(x_{2}-x_{1}\right)\right)} \\
& f\left(y_{2}\right)-f\left(x_{1}\right)= \\
& \frac{d}{d x} f\left((1-t) x_{1}+t-\theta\right)=f^{\prime}(d(t)) d^{\prime}(t) \\
& =f^{\prime}(d(A)) r_{2}-x_{1} \\
& \begin{aligned}
f\left(x_{2}\right)-f\left(x_{1}\right) & =\int_{0}^{1} d f(d(t) d r \\
& =\int_{1}^{1} f^{\prime}(d t e t) d(t) d r
\end{aligned}
\end{aligned}
$$

Proof in $n>1$ variables \square

$$
f\left(x_{1}\right)-f(x)
$$

- For $n>1$ it is possible to use the existence of a continuous map $A: U \times U \rightarrow L\left(\mathbb{R}^{n}\right)$ such that $f^{\prime}\left(\xi^{\prime}\right.$

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=\tilde{A\left(x_{1}, x_{2}\right)}\left(x_{2}-x_{1}\right)
$$

to prove the "easier" statements as in the one-variable case.

$$
\begin{aligned}
& \begin{aligned}
& \jmath A: U \times U \rightarrow L\left(\mathbb{R}^{n}\right) \\
& \approx L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)
\end{aligned} \\
& f_{f(x)}^{\leftarrow} f(x) \\
& \angle\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)^{=}=\left\{\text {leven tares } \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\right\}
\end{aligned}
$$

- A possible choice of A is

$$
A\left(x_{1}, x_{2}\right)=\int_{0}^{1} d_{\lambda(t)} f d t
$$

where $\lambda(t)=\lambda_{x_{1}, x_{2}}(t)=(1-t) x_{1}+t x_{2}$ is the straight line segment from x_{1} to x_{2}.

$$
\underline{f\left(x_{2}\right)-f\left(x_{4}\right)}=\underline{A\left(x_{1}, x_{2}\right)\left(y_{2}-x_{1}\right)}
$$

$$
\text { Sharer } f(r_{x_{1}}-f\left(x_{1}\right)=\underbrace{a\left(r_{1}\right)\left(x_{2}-r_{1}\right)}_{\left(f^{\prime}\left(\xi_{x_{1}, r_{1}}\right)\right.}
$$

- Will need $A\left(x_{1}, x_{2}\right)$ to be defined only for pairs $\left(x_{1}, x_{2}\right) \in U \times U$ with $\left|x_{2}-x_{1}\right|$ small, so only "local convexity" of U is needed. OK for U open.
- Observe that

$$
A(x, x)=d_{x} f
$$

$$
\begin{aligned}
& f(x+h)-f(x)=A(x, x+h) h \\
& =A(x, x)^{h}+\underbrace{(A(x+h, x)-A(x, x) h}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
f(x+h)-f(x) & =A(x, x+h) h \\
& =[A(x, x)+(A(x, x+h)-A(x, x, x)]
\end{array}\right] h
$$

A continoon

$$
\begin{aligned}
& A(x, y)=d_{x} f \\
& f(x+h)-f(x)=A(x, y) h+0(h)) \\
& \Rightarrow A(x, y)=d_{y} f
\end{aligned}
$$

If $f\left(x_{2}\right)-f\left(x_{1}\right)=A\left(x_{1}, x_{1}\right)\left(x_{2}-x_{1}\right]$
ing jetrin.....
everytuy ercol in fokenser follows ace 18 1-rece.

$$
A(x, y)=d_{y} f
$$

x_{0} where $d_{x_{v}} f$ invertibe

$$
\begin{array}{r}
\Rightarrow A\left(x_{0}, v_{0}\right) \text { invertibl } \\
\Rightarrow \exists \text { nith } N \text { of } y_{0} \text { whe } \\
\\
A\left(x_{1}, v_{2}\right) \text { workin } \\
x_{1}, r_{2} \subset N
\end{array}
$$

Proof could proceed as follows:

- Let $a=2\left\|\left(d_{x_{0}} f\right)^{-1}\right\|=2\left\|A\left(x_{0}, x_{0}\right)^{-1}\right\|$.
- Since A is continuous, the set $\Omega \subset L\left(\mathbb{R}^{n}\right)$ is open, and $A\left(x_{0}, x_{0}\right)=d_{x_{0}} F \in \Omega, x_{0}$ has a nbhd N such that $A\left(x_{1}, x_{2}\right)$ is invertible for all $\left(x_{1}, x_{2}\right) \in N \times N$.
- Since inversion and norm are continuous, there exists a nbhd $N_{x_{0}}$ of x_{0}, contained in N, so that

$$
\left\|A\left(x_{1}, x_{2}\right)^{-1}\right\|<a \text { for all } x_{1}, x_{2} \in N_{x_{0}}
$$

(a as above)

Proof of injectivity

- Let $y_{i}=f\left(x_{i}\right)$. Then $y_{2}-y_{1}=A\left(x_{1}, x_{2}\right)\left(x_{2}-x_{1}\right)$
- Apply $A\left(x_{1}, x_{2}\right)$ to both sides:

$$
A\left(x_{1}, x_{2}\right)^{-1}\left(y_{2}-y_{1}\right)=x_{2}-x_{1}
$$

- Norms:

$$
\begin{aligned}
& \left|x_{2}{ }^{\prime}-x_{1}\right| \leq\left|\left|A\left(x_{1}, x_{2}\right)^{-1}\right|\right|\left|y_{2}-y_{1}\right| \leq a \stackrel{y_{2}-y_{1} \mid}{\sqrt{0}} \\
& \text { - Thus } f \text { is injective on } N_{x_{0}} \text {, and its inverse } \\
& \underbrace{\sim}_{y_{2}=y_{1}} \\
& f^{-1}: f\left(N_{x_{0}}\right) \rightarrow N_{x_{0}} \text { is continuous. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Easy } d_{x_{6}} f \text { inu } \\
& \Rightarrow \exists \text { wate } N_{r_{0}} \text { s. } f: N_{r_{0}} \rightarrow 12^{n} \\
& \text { injection. } \\
& \text { and } f^{-1}!f\left(N_{r_{0}}\right)+N_{r_{0}} \\
& \text { in contiones. } \\
& \text { finker } \cdots a_{n} N_{0} \\
& \Rightarrow \operatorname{hara:~beper~onto~}_{\text {hapx }}^{f\left(N_{k_{0}}\right)}
\end{aligned}
$$

Image is open

- Proving $f\left(N_{x_{0}}\right)$ is open in \mathbb{R}^{n} is more difficult for $n>1$.
- Intermediate value theorem rests on:
if J is an open interval in \mathbb{R} and $x \in J$, then $J \backslash\{x\}$ is disconnected.
- If $n \geq 2, B \subset \mathbb{R}^{n}$ is an open ball and $x \in B$, then $B \backslash\{x\}$ is connected.

$$
\begin{aligned}
& f\left(x_{2}\right)-f\left(x_{1}\right)=\frac{f\left(x_{1}, x_{2}\right)}{\left(x_{2}-x_{1}\right)} \\
& \begin{aligned}
& f \text { class } C^{\prime} \Leftrightarrow \exists \forall \times U \rightarrow L\left(\mathbb{R}^{n}\right) \\
& \text { and } V^{\prime}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& A(x, y)=d_{2} f \\
& x_{0} \in U \\
& \exists \quad N_{r_{0}} \text { st. } f\left(N_{r_{0}}\right)=N_{f\left(y_{0}\right)} \\
& \text { and } f\left(N_{r_{0}}\right. \text { is forged. } \\
& \text { proves } f\left(\breve{N}_{v_{0}}\right) \text { lis open } \\
& f(x)=x^{2} \\
& -111, f(+1,1)-[0,1) \\
& 3
\end{aligned}
$$

- Need more topology.
- Rudin appeals to the contraction mapping theorem:
- If (X, d) is a complete metric space, $f: X \rightarrow X$ is a contraction, that is, there exists a constant $C<1$ such that

$$
d(f(x), f(y)) \leq C d(x, y) \text { for all } x, y \in X
$$

Then f has a unique fixed point, that is, there is a unique $x_{0} \in X$ such that $f\left(x_{0}\right)=x_{0}$

$$
\begin{aligned}
& x_{1}, x_{2}=f\left(f_{0}\right)=f^{2 n} \\
& \begin{array}{c}
Y \text {. } y \cdot f(n) \\
\vdots \\
\vdots \\
\vdots
\end{array} \\
& \left\{x_{2}\right\} \\
& \mathrm{Caoth} \cdot \Gamma n_{0} \\
& d\left(x_{n+1}, v_{n}\right)<c d\left(x_{x_{1}} x_{2} . d\right. \\
& <C^{2} d C_{m_{n-}-1} \\
& m<n \\
& d\left(x_{n}, x_{n}\right) \leq d\left(x_{n}, k_{n-1}\right) \cdots+d\left(x_{n, 1},\right)^{l} C^{n-1} d\left(x_{2}, x_{1}\right) \\
& \text { Etailems of geomsens } \rightarrow 0
\end{aligned}
$$

Proof of the Contraction Mapping Theorem

- f has at most one fixed point:

If $f\left(x_{1}\right)=x_{1}$ and $f\left(x_{2}\right)=x_{2}$, then

$$
\underset{\vdots}{\underset{\left.d\left(x_{1}, x_{2}\right)\right) \leq \mathcal{C}_{3}}{\sim} d\left(x_{1}, x_{2}\right) \Rightarrow d\left(x_{1}, x_{2}\right)}=0
$$

- f has a fixed point:

Pick $x_{1} \in X$ and let $x_{n}=f^{n-1}\left(x_{1}\right)$.
Since $x_{n+1}=f\left(x_{n}\right), d\left(x_{n+1}, x_{n}\right)<C^{n-1} d\left(x_{2}, x_{1}\right)$
if $m<n$, then $d\left(x_{n}, x_{m}\right) \leq$
$d\left(x_{m+1}, x_{m}\right)+\cdots+d\left(x_{n}, x_{n-1}\right)<\left(C^{m-1}+\cdots+C^{n-2}\right) d\left(x_{2}, x_{1}\right)$
$\Rightarrow\left\{x_{n}\right\}$ is a Cauchy sequence.

- Let $x_{0}=\lim \left\{x_{n}\right\}$. Then

$$
\begin{aligned}
& f\left(x_{0}\right)=\lim \left\{x_{n+1}\right\}=\lim \left\{x_{n}\right\}=x_{0} \\
& f\left(x_{0}\right)=f\left(\operatorname{fon} x_{\sim}\right)=\ln \left(f\left(x_{0}\right)\right\}-\left\{x_{-\left.x_{0}\right|^{\prime}}\right.
\end{aligned}
$$

Example of Contraction

$$
f: R^{n} \rightarrow \mathbb{R}^{n} \text { of class } \mathcal{C}^{1} \text { and such that } \quad \begin{aligned}
& f!\mathbb{R}-2 \mathbb{R} \\
& \left\|d_{x} f\right\| \leq C
\end{aligned}
$$

for all $x \in \mathbb{R}^{n}$ and for some constant $C<1$.

$$
1\left(d_{x} f l \leq M \quad\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leq \operatorname{coth} \|\left(x_{2}-x_{1}\right)\right.
$$

Convert IFT to a FPT

- For IFT need to solve an equation
- Rewrite

$$
\begin{array}{r}
f(x)=y \quad F(x)-y=0 \\
x-x=0
\end{array}
$$

$$
x=x+(f(x)-y)
$$

- More generally

$$
x=x+\measuredangle(f(x)-y)
$$

where L is an invertible linear transformation.

$$
\begin{aligned}
L(f(y)-y) & =0 \\
\Rightarrow f(x) & =y
\end{aligned}
$$

- For each $y \in \mathbb{R}^{n}$ and for each invertible $L \in L\left(\mathbb{R}^{n}\right)$, define a map

$$
\phi=\phi_{y, L}: U \rightarrow \mathbb{R}^{n}
$$

by

$$
\phi(x)=x+L(f(x)-y)
$$

- Then $f(x)=y \Longleftrightarrow \phi(x)=x$
- Challenge: choose Lso that we get a contraction of an appropriate complete metric space.

$$
\begin{aligned}
& \binom{C(x)=\underline{x+L(f(A-y)}}{y,} \\
& \|d \varphi\|<(C)<1 \\
& q d \varphi=1+L(d f f) \\
& \left|l d_{4} q\right| \mid<1 / 2 \\
& \begin{array}{c}
\left\|1+L L_{2}^{d+L}\right\|=L\left(L^{-1}\right. \\
L R^{-1}+L d_{2} A
\end{array}
\end{aligned}
$$

Inverse Function Theorem

$-U \subset \mathbb{R}^{n}$ open, $f: U \rightarrow \mathbb{R}^{n}$ continuously differentiable.

- Suppose $x_{0} \in U$ and the derivative $d_{x_{0}} f \in L\left(\mathbb{R}^{n}\right)$ is invertible.
- Then there are neighborhoods $N_{x_{0}}$)f x_{0} and $N_{y_{0}}$ of $y_{0}=f\left(x_{0}\right)$ such that
- $f\left(N_{x_{0}}\right)=N_{y_{0}}$ and $f: N_{x_{0}} \rightarrow N_{y_{0}}$ is bijective.
- The map $g: N_{y_{0}} \rightarrow N_{x_{0}}$ inverse to $\left.f\right|_{N_{x_{0}}}$ is continuously differentiable

$$
\begin{aligned}
& \text { Start proof IFT } \\
& \text { - Let } A=d_{x_{0}} f \text { and let } a=\left\|A^{-1}\right\| \\
& \text { - Let } \\
& N=\widehat{N_{x_{0}}}=\left\{x \in U:\left\|d_{x} f-A\right\|<\left\{\frac{1}{2}\right\}\right. \\
& \left\|\underset{x}{d_{x} f}-d_{r_{x}} f\right\|<\frac{1}{2\left\|\left(d_{r} f\right)^{-1}\right\|}
\end{aligned}
$$

Recall: A invertible, $\|B\|<\frac{1}{a} \Rightarrow A-B$ invertible.

$$
\begin{aligned}
& 1 / a \rightarrow \text { ins } \\
& 1 / 2 a \rightarrow \text { more }
\end{aligned}
$$

- Recall that for any fixed invertible $(L) \in L\left(\mathbb{R}^{n}\right)$,

$$
\begin{array}{r}
f(x)=囚<x=x+L(y-f(x)) \\
L(g-f(-1)=0 \\
E g=f(x)
\end{array}
$$

- In particular

$$
f(x)=y \Longleftrightarrow x=x+\widehat{A^{-1}}(y-f(x))
$$

- For each $y \in \mathbb{R}^{n}$, define a map $\phi=\phi_{\mathbb{E}}: \underline{\mathbb{R}^{n}}$ by

$$
\phi_{y}(x)=x+A^{-1}(y-f(x))
$$

- Then $f(x)=y \Longleftrightarrow \phi_{y}(x)=x$

$$
\begin{aligned}
& \phi=\phi_{y} \\
& \text { - } x \in(N) \Rightarrow\left\|d_{x} \phi\right\| \leq \frac{1}{2} \\
& \varphi(x)=x+A^{-1}(y-f(x)) \\
& \begin{aligned}
d_{i k} \varphi & =1 \\
& 1+A^{-1}\left(d_{k} f\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
x_{1}
\end{array}\right)
\end{aligned} \\
& \int_{\text {tGend }}^{S \operatorname{tar} \frac{1}{2 a}} \\
& \left\|d_{x} \varphi\right\|=\left\|A^{-1}\left(A-d_{x} f\right)\right\| \\
& \therefore \frac{\left\|A^{-1}\right\|}{a} \frac{\left\|A-d_{r} f\right\|}{c 1 / 2 a}=1 / 2
\end{aligned}
$$

- $\phi_{y}: N \rightarrow \mathbb{R}^{n}$ satisfies

$$
\left|\phi_{y}\left(x_{2}\right)-\phi_{y}\left(x_{1}\right)\right| \leq \frac{1}{2}\left|x_{2}-x_{1}\right|
$$

- $\phi_{y}: N \rightarrow \mathbb{R}^{n}$ is a contraction (Lipschitz with Lipschitz constant <1.)

$$
N \rightarrow \mathbb{R}^{n}
$$

$c_{y}(x) \quad$ In ouse $\left(\left.\varphi_{y}(x)-\varphi_{y}(x)\left|\leq \frac{1}{2}\right| x_{2}-y \right\rvert\,\right.$

- Note that for fixed x

$$
\phi_{y_{2}}(x)-\phi_{y_{1}}(x)=A^{-1}\left(y_{2}-y_{1}\right)
$$

- Thus

$$
\underline{\left|\phi_{y_{2}}(x)-\phi_{y_{1}}(x)\right|} \leq \underset{\cong}{a}\left|y_{2}-y_{1}\right|
$$

$$
\varphi_{y}(x)
$$

$\varphi_{y}(x)$

- Want to prove $f(N)$ is open in \mathbb{R}^{n}.
- Let $x_{1} \in N$ and $y_{1}=f\left(x_{1}\right)$.
- Need to find $\rho>0$ so that $\left|y-y_{1}\right|<\rho \Rightarrow y=f(x)$ for some $x \in N$.

- Fix $(r)>0$ so that the closed ball $\overline{B\left(x_{1}, r\right)} \subset N$
- Want: $\rho=\frac{r}{2 a}$ works.
- First

$$
\begin{aligned}
& \text { - } 9 \text {, } \\
& \text { (1). } \\
& e_{y_{1}}\left(x_{1}\right)=x_{1}\left(x_{1}\right)=\sigma_{1}
\end{aligned}
$$

- Next

$$
\left|x-x_{1}\right|<r \Rightarrow\left|\phi_{y}(x)-\phi_{y}\left(x_{1}\right)\right| \leq \frac{\left|x_{2}-x_{1}\right|}{2}
$$

- Together:

$$
\begin{aligned}
& \left|y-y_{1}\right|<\frac{r}{2 a} \text { and }\left|x-x_{1}\right| \leq r \Rightarrow\left|\phi_{y}(x)-x_{1}\right| \leq r
\end{aligned}
$$

- Conclusion:

$$
\left|y-y_{1}\right|<\frac{r}{2 a} \Rightarrow \phi_{y}: \overline{B\left(x_{1}, r\right)} \rightarrow \overline{B\left(x_{1}, r\right)}
$$

- ϕ_{y} is a contraction of the complete metric space $\overline{B\left(x_{1}, r\right)}$
- Thus there is a unique $x \in \overline{B\left(x_{1}, r\right)}$ with $\phi_{y}(x)=x$

$$
\varphi_{4} \quad \text { all } g
$$

ones fou sam spiecuich
proved i $f\left[N_{x_{6}}\right.$ is intact

$$
f\left(N_{y_{0}}\right) \text { open }=N_{y_{0}}
$$

More: $f^{-1}: N_{y_{8}} \rightarrow N_{r_{0}}$ is O^{\prime}

$$
\begin{aligned}
& c_{1, c}, e_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { "Bi-Lirean" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Know hather } d f^{-1} \text { mostbe } \\
& d_{j} f^{-1}=\left(d_{f-(y)} f\right)^{-1} \\
& f^{-1}(y+k)-f^{-1}(g)=\left(\underline{d_{\text {cras) }}},\right)^{-1}(k, ;
\end{aligned}
$$

$$
f\left(N_{x_{0}}\right) \text { open }
$$

probeciten $\ell d f \quad$ menucot f atcot ,at nod epr

$$
\begin{aligned}
& f: U_{h=G}^{c R^{x}} \longrightarrow R^{x} \\
& \text { it } f^{-1} \text { existi } a \text { is diff } \\
& \Rightarrow d, f \text { in inveloble. } \\
& \text { Chain Role: } \\
& f^{-1} \circ f=i d \\
& \begin{array}{l}
d f^{-1}(f(x))=x \\
\left(d_{\delta(x)}\left(f^{-1}\right) \cdot \cdot d_{x} f\right)=1
\end{array} \\
& A, \beta \in L\left(\mathbb{R}^{n}\right) \\
& \left\{\begin{array}{rl}
A B=1 \\
\Rightarrow A & i B \text { marA } \\
A & A B^{-1} \\
B=A^{-1}
\end{array}\right. \\
& B A=1 \\
& d_{r_{0}} f \text { invertichle }
\end{aligned}
$$

ne cessany and for exirton of a diff inuwse neear $f\left(f_{0}\right)$.

Bimplest case Implicit func th.
$\pm=$ nhd of $(0,0)$ in \mathbb{R}^{2}

$$
f: \bar{U} \rightarrow R \quad C^{\prime}, \quad\left\{\begin{array}{l}
\frac{\partial f}{\frac{\partial f}{\partial y}(0,0)} \neq 0 \\
f(0,0)
\end{array}\right.
$$

$\Rightarrow I$ inmen I, T and a frac

$$
\begin{aligned}
& \varphi \cdot I \rightarrow J \quad \text { se. } I \times J \subset U \\
& \{(\varphi, y): f(x, y)=0\} \cap I \times J \\
& =
\end{aligned}
$$

defm I a impictal

$$
\text { a fuaction of } x \text {. }
$$

$$
f(x, y)=9-x^{2}
$$

$$
\frac{\partial f}{24}=1 z 0
$$

$$
\begin{aligned}
& g(8, y)=y^{2}-x \\
& \frac{\partial g}{\partial y}=2 y=0 \text { at }(0,0) \\
& y^{2}-x=\text { is not the }
\end{aligned}
$$

graph of a fur. in any nike Cod

$$
\begin{aligned}
& f: \mathbb{R}^{x} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{(m)} \text { class } C^{\prime} \\
& (\sigma, 0) \\
& \frac{\partial f}{\partial x^{n+1}(0,0) \neq 0} \Rightarrow+\operatorname{lan}_{1}=N_{2}
\end{aligned}
$$

$$
\begin{aligned}
& d_{(0,0)} f \quad \mathbb{R}^{x+m} \rightarrow \mathbb{R}^{n} \\
& \left({ }^{n} \mid \square_{n}^{m}\right)_{m} \\
& \exists N_{1}, N_{2}, \varphi: N_{1} \rightarrow N_{2} \quad d f \cos \alpha \\
& \left.\left(v_{1} \times v_{1}\right) \cap(f=0)=\sum x, \varphi(x): x \in N_{1}\right\}
\end{aligned}
$$

Implicit Function Theorem

- If $A \in L\left(\mathbb{R}^{m} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$, write

$$
A=\left(\begin{array}{ll}
A_{x} & A_{y}
\end{array}\right)
$$

Where $A_{x} \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$ and $A_{y} \in L\left(\mathbb{R}^{n}, \mathbb{R}^{n} \boldsymbol{z}_{3}\right)$.

- So, if $(v, w) \in \mathbb{R}^{m} \times \mathbb{R}^{n}, v \in \mathbb{R}^{m}, w \in \mathbb{R}^{n}$

$$
\begin{aligned}
& A\left(\begin{array}{l}
u, v \\
\alpha / \mathbb{R}^{M} \\
\sigma_{\mathbb{R}^{2}}
\end{array}=\left(\begin{array}{ll}
A_{v} & A_{y}
\end{array}\right)\binom{u}{r}\right. \\
& =A_{x} u+A_{y} v \\
& A_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{2} \\
& A_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

$$
f(0, q)
$$

- If $U \subset \mathbb{R}^{m} \times \mathbb{R}^{n}$ is open and $f: U \rightarrow \mathbb{R}^{n}$ is differentiable, $\left(x_{0}, y_{0}\right) \in U$.

$$
\left.d_{\left(x_{0}, y_{0}\right)} f=\left(\left(d_{\left(x_{0}, y_{0}\right)} f\right)_{x}\left(d_{\left(x_{0}, y_{0}\right)} f\right)_{y}\right)\right)=(\underbrace{\frac{\partial f}{\partial x}}\left(x_{0}, y_{0}\right) \frac{\partial f}{\frac{\partial y}{\partial y}\left(x_{0}, y_{0}\right)})
$$

- Notation not standard
- $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ stand for blocks of the Jacobian matrix of f.

$$
\frac{\partial f}{\partial y}=\left(\begin{array}{ccc}
\partial f_{1} & \frac{\partial f_{1}}{\partial x_{1}} & \cdots \frac{\partial f_{1}}{\partial y_{2 n}} \\
\vdots & \frac{\pi}{\partial y_{1}} & -\frac{\partial f_{1}}{\partial y_{z}} \\
\frac{\partial f_{n}}{\partial r_{1}} & \frac{\partial f_{n}}{\partial y_{m}} & \frac{\partial f_{n}}{\partial y_{1}}
\end{array}\right.
$$

$$
\begin{array}{ll}
\exists \varphi=N_{1} \rightarrow N_{2} & \\
\text { st. }\left(\begin{array}{ll}
1 & 1)
\end{array}\right) N_{1} \times N_{2} \text { has } f(r, g)=0
\end{array}
$$

$\Leftrightarrow \varphi=q(x)$
Theorem $\left\{f(x, y)=0 S_{n N} N_{1}=v\right)=$ graph of a.

- $f: U \rightarrow \mathbb{R}^{n}$ as above, f of class \mathcal{C}^{1}.
- $\left(x_{0}, y_{0}\right) \in U$, with $x_{0} \in \mathbb{R}^{m}$ and $y_{0} \in \mathbb{R}^{n}$
- Suppose that
- $f\left(x_{0}, y_{0}\right)=0$
- $\frac{\pi}{\partial y}\left(x_{0}, y_{0}\right) \in L\left(\mathbb{R}^{n}\right)$ is invertible
- Then there exist
- Nbs N_{x}, N_{y} of x_{0}, y_{0} respectively, with $N_{x} \times N_{y} \subset U$,
- A map $\phi: N_{x} \longrightarrow N_{y}$ of class \mathcal{C}^{1},
- Such that

$$
\left\{(x, y) \in N_{x} \times N_{y}: f(x, y)=0\right\}=\left\{(x, \phi(x)): x \in N_{x}\right\}
$$

Picture for $m=n=1$

er $\quad \underset{(0,0)}{ }(y, 9)=y^{2}-x$

$\rightarrow\left\{\begin{array}{l}x-y^{2}=0 \\ \text { a sut a fue of } x \\ \text { on any n nd of } 0\end{array}\right.$
$f(x, y)=y=x^{2}$

Proof for $m=n=1$

$$
\begin{aligned}
& f\left(x_{0, c} c_{0}\right)=0 \\
& \frac{\partial f}{\partial 1}\left(x_{0}, y_{0}\right) \neq 0 \Rightarrow \sum_{0}<_{0}
\end{aligned}
$$

$$
\text { suppose } \frac{\partial f}{\partial h}\left(x_{1}, z\right)
$$

show φ is C^{\prime}

$$
\begin{aligned}
& \frac{d}{d f}\left(\left(f\left(t, \varphi_{0}\right)(t)\right)=0\right) \\
& =\frac{\partial f}{\partial y}+\frac{\partial f}{\partial \eta} \varphi^{\prime}(t)=0 \\
& \varphi^{\prime}(t)=\frac{-\frac{\partial f}{\partial y}\left(\omega^{\prime} \varphi(a)\right.}{\left.\frac{\partial f}{\partial \eta}(t) \varphi(t)\right)}
\end{aligned}
$$

Same for arbitrary $n=1$

Examples

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}-1=0 \\
& \frac{\partial f}{\partial z}=2 z \neq 0 \quad z=0 \\
& (0,0,1) \\
& z=\sqrt{1-x^{2} c y^{2}} \text { fincer } \\
& q x, 9
\end{aligned}
$$

nnverse Func Thm \Rightarrow Implicit Func Thm

- Define $F: U \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}$ by

$$
F(x, y)=(x, f(x, y))
$$

- Then
is invertible.

$$
d_{\left(x_{0}, y_{0}\right)} F=\left(\left.\frac{(\mathbf{l}| | c \mid c}{\frac{\partial}{\partial *}} \right\rvert\,\left\{\frac{\partial}{\partial y}\right)\right. \text { finverlhe }
$$

- Inverse Function Thm gives local inverse G defined near $F\left(x_{0}, y_{0}\right)=\left(\underline{x_{0}, 0}\right)$
- Check $G(u, v)=(\underline{u, g(u, v}))$ with $f(u, g(u, v))=v$
- Let $\phi(x)=g(x, 0)$.

$$
\begin{gathered}
q_{1}(u, v)=x \\
G_{G}(u, v)=(u, g(u, v)) \\
\quad P(u, g(u, v))=(u, v)
\end{gathered}
$$

$$
\begin{aligned}
& q(x)=g(r, q) \\
& f(x, q(v, q)=0
\end{aligned}
$$

Implicit Func Thm \Rightarrow Inverse Func Thm

- Let $f: U \rightarrow \mathbb{R}^{n}$ and $y_{0} \in U$ as in Inverse function thm.
- Define $F: \mathbb{R}^{n} \times \mathbb{R}^{n}$ by

$$
F(x, y)=f(y)-x \quad=
$$

- Then $F\left(f\left(y_{0}\right), y_{0}\right)=0$ and $\frac{\partial F}{\partial y}\left(f\left(y_{0}\right), y_{0}\right)=d_{y_{0}} f$ invertible.
- Then $F(x, \phi(x))=f(\phi(x))-x=0 \Leftrightarrow f(\phi(x))=x$

$$
y^{2}-x
$$

$$
x=\sqrt{4}
$$

$$
\begin{aligned}
& \mathbb{R}_{\rightarrow}^{n} \rightarrow \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& \sqrt{m} \text { 禺交 }
\end{aligned}
$$

Critical Points

$$
\begin{aligned}
& \alpha_{p}+1(n)
\end{aligned}
$$

$-U \subset \mathbb{R}^{n}$ open, $f: U \rightarrow \mathbb{R}$ differentiable. $\quad \nabla_{p} f \in \mathbb{R}^{n}\left(\frac{2 f}{20}, \cdots-\cdots \frac{2 f}{2 \alpha}\right)$

- $p \in U$ is called a critical point of f if $d_{p} f=0 \quad\left(d_{p} f\right)(h)$
- Equivalently: $\frac{\partial f}{\partial x_{1}}(p) \cdots=\frac{\partial f}{\partial x_{n}}(p)=0 \quad \mathrm{lma} / \Omega^{2}=\left(\nabla_{p} f\right) \cdot h$
- Equivalently: Gradient $\nabla_{p} f=0$.
- Know (homework): p a local maximum (or min) for $f \Rightarrow p$ is critical point for f.

May or mos prob for

$$
f: V^{c o m} \rightarrow p
$$

lost for central pes $\nabla_{p} f=0$ ($\Leftrightarrow d_{p}+t=0$)
c-Pten

Non-singular hypersurfaces

- Suppose $g: U \rightarrow \mathbb{R}$ of class \mathcal{C}^{1}.

more: simba
- The set $\{g=0\}$ is called a hypersurface in U.
- Suppose that $d_{p} g \neq 0$ for all $p \in\{g=0\}$
- This means that for each $p \in\{g=0\}$, for at least one $i \in\{1, \ldots, n\}, \frac{\partial g}{\partial x_{i}} \neq 0$.
- By the implicit function thm, each $p \in\{g=0\}$ has a neighborhood N_{p} for which one x_{i} is a \mathcal{C}^{1}-function of the remaining ones.
- To avoid complicated notation, suppose $\frac{\partial g}{\partial x_{n}}(p) \neq 0$.
- The p has a $\operatorname{nbd} N=N_{1} \times N_{2}, N_{1} \subset \mathbb{R}^{n-1}, N_{2} \subset \mathbb{R}$. and a \mathcal{C}^{1} function $\phi: N_{1} \rightarrow N_{2}$ such that

$$
\{g=0\} \cap\left(N_{1} \times N_{2}\right)
$$

is the graph of ϕ

$$
\left\{\left(x_{1}, \ldots, x_{n-1}, \phi\left(x_{1}, \ldots, x_{n-1}\right)\right):\left(x_{1}, \ldots, x_{n-1}\right) \in N_{1}\right\}
$$

- Conclusion: $\{g=0\} \cap\left(N_{1} \times N_{2}\right)$ is in bijective, \mathcal{C}^{1} correspondence with the open set $N_{1} \subset \mathbb{R}^{n-1}$
- Locally $\{g=0\}$ is an open set in \mathbb{R}^{n-1}.
- Called non-singular hypersuface for this reason.
- Locally looks like $\mathbb{R}^{n-1} \subset \mathbb{R}^{n}$

Examples

$$
x^{2}+y^{2}+z^{2}-1 \leq 9(x, y, z)
$$

$9=0$ i unnet shme

$$
\begin{gathered}
\frac{d g=(2 x, 2 q, 2 z)}{d g=(2 x \quad 2 q z z)} \\
\nabla g=(2 x, 2 y, 2 z) \\
\nabla g=0 \Leftrightarrow x a=z=0 \\
\Rightarrow x^{2}+g_{1}+z^{2}-1=-2 \neq 0 \\
\nabla g \neq 0 \text { on } g(x, y, z)=0 .
\end{gathered}
$$

at leser one of $\frac{2 g}{3 y}, 29 / 29,29 / 2 z * 0$
by implicit functhos

$$
\begin{aligned}
& x=f \text { mo }(y, z) \\
& m=f(y, z) \\
& y=f(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} L n^{2}-z^{2}=1 \\
& x^{2} y^{2}=1+z^{2} \\
& \text { lask of one sher } \\
& \text { nox-seay hourale } \\
& \frac{\partial g}{\partial x}=2 \gamma \quad 89 / 3=29 \quad \frac{29}{22}=-2 z \\
& \text { rot all gens g(xan,x)=0 }
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+y^{2}-z^{2}=0 \\
& z= \pm \sqrt{x^{2}}
\end{aligned}
$$

Siongaler supr

$$
v \subset \mathbb{R}^{n}
$$

$g i \square-\rightarrow \mathbb{R} \quad \nabla_{10} g$ to on $\left.\lg (p)=0\right\}$
xar sing hpan

$$
f \prime U \rightarrow \mathbb{R} \quad C^{\prime}-f r e .
$$

crobual pares of $f\lceil\{920\rangle$?

aly concent inoulooss daforuans canbe sfudoes by restace to open sett in $\mathbb{R}^{m y}$ doman. "t the fones \sin (En. th.

cover your han-sm hyausume hy sefs

$$
\begin{aligned}
& \mathbb{R}^{n-1} \times \mathbb{R} \\
& \stackrel{u}{v} \rightarrow \|_{R}
\end{aligned}
$$

$$
f \mid[g=0) \text { contal frinat }
$$

$$
\text { of } f /(x, y(v)
$$

$$
=f\left(x, \varphi(x) \quad x \in N \text { in } R^{2 x}\right.
$$

ant $f\left(x, y, \sqrt{1-x^{2}-y^{2}}\right), f\left(x, y,-\sqrt{1-x^{2} y^{2}}\right)$

z anthuy z ? $\quad\left(x, y, \pm \sqrt{\left.1-x_{0, y}\right)}\right.$
$z: \sqrt{1-y^{2}-y^{2}}$ ($x, t \sqrt{1-x^{2} z^{2}}, z$)

$-\sqrt{1-r^{n}-y^{1}}$
($\left.4 \sqrt{1-y^{2}-\infty}\right) ~ y, z$)
(2) $\frac{27}{8^{2}} \boldsymbol{x}$

how to dow this e flicientuit

$$
d f \cdot(\psi, \varphi(s)=0
$$

$\left(d_{p} f\right)($ veatas tancot or ρ at $p)$

$$
-x^{-x}, \varphi(x) \quad \notin(x) a \rightarrow \infty
$$

$$
\text { (o, } \ldots>)
$$

$$
(\underset{p}{\nabla} g)^{\perp}
$$

$d_{p p} \mid\left(V_{p}\right)^{+} \equiv 0$
$\nabla_{p}+\perp\left(\left(D_{p}, g^{4}\right)\right.$

$$
\begin{aligned}
& \text { Critical points of }\left.f\right|_{\{g=0\}} \\
& \nabla_{D} t=\| \nabla_{p g} \\
& \Leftrightarrow 7 \mathrm{~d} s t_{1} \\
& D_{p} f=\lambda \nabla_{p, g} \\
& z \text { on 9 9 畐么 } 21 \cdots=1=0 \\
& \left(0, c_{1}, 1\right)=d \frac{\left(2 x, 2 m_{1}, 2 z\right)}{\left.x<y_{2}\right)}
\end{aligned}
$$

$$
\begin{array}{r}
z^{2}=1 \\
z=\geq 1 \\
(0,0, \pm 1)
\end{array}
$$

