Foundations of Analysis II Week 6

Domingo Toledo

University of Utah

Spring 2019

・ロト・西ト・ヨト・ヨー うべの

$$\begin{array}{c}
\left| f(x_{0}) - f(x_{-1})\right| & \text{s.t.} \\
\frac{f(x_{0}) - f(x_{-1})}{1 + l + s} & \leq c \quad (1 + e) \\
& \quad \leq \int_{-\pi}^{\pi} \left| k_{0}(e) d^{2} \right| \\
& \quad \leq c \quad \int_{\pi}^{\pi} \left| k_{0}(e) d^{2} \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi} \left| f(k_{0}) - f(k_{0}) \right| \\
& \quad \leq \int_{\pi}^{\pi}$$

Differentiable Functions of Several Variables

Simplest Example:

Linear transformations $A : \mathbb{R}^m \to \mathbb{R}^n$

- Recall Linear algebra vocabulary:
 - Vector space
 - Linear combinations
 - Linear independence
 - Span
 - Basis, dimension

For finite dimensional vector Spe

・ロト <
回 ト <
三 ト <
三 ト <
三 ・
の へ
の
、
</p>

・ロト・1日・1日・1日・1日・1日・

Need: all bases have
Same #
Steinitz replace net The
Cexchange lemme)
Ain a fate den M
Soppose
$$V_{11} - ... V_m$$
 independen
 $V_{11} - ... V_m$ independen
 $V_{11} - ... V_m$ spans
 $=$ after possibly reordering
 $V_{11} - ... V_m$,
 $V_{12} - ... V_m$,

One conc"
$$M \in M$$

 $\int = indep \; set$
 $S = Spanay \; set$
 $\#J \leq \#S$
 $= ifi \; B_i , B_i \; are \; bases$
 $f = S \; J$
 $\#B_i \leq \#B_i$
 $S \; J$
 $\#B_i \geq \#B_i$
 $= HB_i = \#B_i$

Examples of $(\mathbb{R}$ -)VectorSpaces

- Main example: \mathbb{R}^n :
 - dim $(\mathbb{R}^n) = n$
 - Every *n*-dimensional vector space is isomorphic to \mathbb{R}^n
- Another example: Pⁿ ⊂ C(ℝ, ℝ), the space of polynomials of degree ≤ n.

$$\mathcal{P}^n = \{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n : a_0, \dots a_n \in \mathbb{R}\}$$

IR

Similarly *T^N* ⊂ *C*(ℝ/ℤ, ℝ), the space of trigonometric polynomials of degree ≤ *N*:

$$\mathcal{T}_{\mathcal{N}}^{\mathcal{N}} = \{a_0 + \sum_{n=1}^{N} (a_n \cos(nt) + b_n \sin(nt)) : a_0, a_n, b_n \in \mathbb{R}\}$$

- What are the dimensions of $\mathcal{P}^n, \mathcal{T}^N$?
- C-versions (complex vector spaces)
 - Take $a_i \in \mathbb{C}$ in definition of \mathcal{P}^n .
 - Take $\sum_{-N}^{N} c_n e^{int}$ to define \mathcal{T}^N .

TF

¢

▲□▶▲圖▶▲≣▶▲≣▶ ■ 少々⊙

Some Infinite Dimensional Vector Spaces

CC,1

P = pop of any dyres

Zuery fim

Every M-dim VC Sp.

- * ロ * * 個 * * 目 * * 目 * ・ 目 ・ 少々ぐ

- ► *X*, *Y* vector spaces.
- $A: X \rightarrow Y$ is a Linear Transformation

Examples A = id a y - ax most by a Socialer $\begin{pmatrix}
p^{n} \rightarrow p^{n-1} \\
p \rightarrow p' \\
p^{n} \rightarrow p^{n} \\
p \rightarrow s^{*} p^{(k)} \\
p \rightarrow s^{*} p^{(k)}$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Linear Transformations and Matrices

• X, Y finite dimensional with bases
{
$$e_1, \ldots, e_m$$
} for X, { f_1, \ldots, f_n } for Y.
X e_i , $x \in r_i e_i + \cdots + r_m$ A e_m
 $A_i x = Z r_i$ $e_i + \cdots + r_m$ A e_m
 e_i e_j
 $A : \mathbb{R}^m \to \mathbb{R}^n$
 $A e_i = \sum_{i=1}^m a_{ij} f_i$
 $a_i x \in A$ with

▲□▶▲母▶▲≣▶▲≣▶ ≣ のへで

Invertible LinearTransformations

- ► X, Y finite dimensional,
- $\dim(X) = \dim(Y)$,
- $A: X \to Y$ linear.
- Then A is one-to-one \Leftrightarrow A is onto.

Super Jaymenten = X A y dim Kindin Y a, Ate, +-tagenten = X - Y dim Kindin Y A (a, c, -+ conen) = 0 (A e, 1--, A en in K A (a, c, -+ conen) = 0 (A e, 1--, A en in Y A 121 A 121 Tale, +- + anen = 0 - A e, -, A en form for Y Tale, +- + anen = 0 - A e, -, A en form for Y ▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Y 1 So my y c Y 3 an - , an cr Shy = q, Ae, +- + 4an Aem deme At g =x => Arzy A A" = id v AT'A = in x

▲ロト▲舂と▲臣と▲臣と 臣 のへで

The Space, L(X, Y)- SA: K-1Y: loven p a vector suc is A., B EL(r, Y) EN A+B a L(r, Y) (A + B)(x) = A x + B x(a A)(x) = a(A x)

メロトメ母トメミトメミト ヨークへで

 $\begin{array}{ccc} \mathcal{L}(x, y) & \mathcal{L}(y, z) \\ \mathcal{A} & \mathcal{R} \end{array}$ Norm of $A \in L(\mathbb{R}^m)/\mathbb{R}^n$ BA el (e, Z) $||A|| = Sup \left\{ |A| < \frac{1}{2} |A| \right\}$ L(x,x) is an alreader. 186 " (10/ 14 41 $= \left| A \left(\left| x \right| \xrightarrow{X} \right) \right| = \left| x \right| \left| A \left(\frac{x}{1} \right) \right|$ E II AN INI

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

 $|Ax| \leq ||Ah||x||$

Another def of horn 1/ AN = ind { C : (AY = C |x| +x= R -3

[Arl+CIV] meture speur con CANGA Lipschuts Conditus C Lipschutz confur ▲□▶▲圖▶▲圖▶▲圖▶ = ● のへで

•
$$A \in L(\mathbb{R}^m, \mathbb{R}^n) \Rightarrow A$$
 is uniformly continuous.
(In fact A is Lipschitz, with Lipschitz constant||A||.)
 $\mathcal{E} \xrightarrow{} \mathcal{E} \stackrel{\mathcal{E}}{\longrightarrow} \frac{\mathcal{E}}{\mathcal{U}}$

$$A, B \in L(\mathbb{R}^m, \mathbb{R}^n) \Rightarrow ||A + B|| \leq ||A|| + ||B||.$$

$$\bullet A \in L(\mathbb{R}^{M}, \mathbb{R}^{n}), B \in L(\mathbb{R}^{n}, \mathbb{R}^{k}) \Rightarrow ||BA|| \leq ||B|| ||A||$$

BAXI & (1Bh HAM) X/ 11BAI SUBLIAN

• $L(\mathbb{R}^m, \mathbb{R}^n)$ is a *normed* vectorspace. • $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ is a normed algebra

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

 $(I+B)^{-1} = I-B+B^2-B^3 + -$ covers of 11B11 ~ 1 1 I - B + B - - 1 1 2 1 + 11 B117 - 1B11° - 2 + 14 RB1121 · · ·)

$$A \in \mathcal{O}, A + B : M^{-1}B = A^{-1}B = A^{-1}B = A^{-1}B = A^{-1}$$

The map $\Omega \to \Omega$ defined by $A \to A^{-1}$ is continuous.

$$|V| = V Yi - i x^2$$

$$||AA | |X|$$

Comparison with other norms

- Suppose $A \in L(\mathbb{R}^m, \mathbb{R}^n)$ has matrix $(a_{i,j})$
- A takes the column vector x with entries (x_1, \ldots, x_m) to the column vector y with entries (y_1, \ldots, y_n) given by the matrix product:

$$y_i = \sum_{j=1}^m a_{i,j} x_j$$

(acj) ERMM analon possible home on L(x,y) (Zavji) V2

Schwarz inequality gives, for each $i \in \{1, ..., n\}$

$$f_{\text{TYE}} \stackrel{()}{\sim} \underbrace{(y_i^2)}_{j=1} \leq (\sum_{\substack{j=1\\ i > j}}^{m} a_{i,j}^2) (\sum_{j=1}^{m} x_j^2),$$

$$\sum_{j=1}^{m} y_j^2 = \sum_{j=1}^{m} (\sum_{j=1}^{m} a_{i,j}^2) (\sum_{j=1}^{m} x_j^2),$$

Natural Questions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

11 A1(= mar 212,1, -. idn) + (Z(del)'2

MAII = mar Idl id equele of AtA

- ▲ロト ▲母 ト ▲臣 ト ▲臣 ト のへで

Invertible Transformations

• Write $L(\mathbb{R}^n)$ for $L(\mathbb{R}^n, \mathbb{R}^n)$.

Suppose $A \in L(\mathbb{R}^n)$ is invertible, so A^{-1} exists.

• $AA^{-1} = I$ (the unit matrix) • Then $|I|| \le ||A|| ||A^{-1}||$ gives $||A^{-1}_{..}|| \ge \frac{1}{||A||}$

Warning: almost never equality!

Since
$$x = A^{-1}Ax$$
, get $|x| \le ||A^{-1}|| |Ax|$
Equivalently
$$||Ax| \ge \frac{1}{||A^{-1}||} |x|| \text{ for all } x \in \mathbb{R}^n.$$
A invertely
J a construction
J a construction<

・ロト・日本・モート モー うくぐ

We see:

Theorem

The norms of the partial sums are majorized by

$$\sum_{0}^{\infty} (-1)^{n} (||A^{-1}|| ||B - A||)^{n} = \frac{1}{1 - ||A^{-1}|| ||B - A|}$$

We also get the estimate (Rudin, proof of Thm 9.8)

$$||B^{-1}|| \le \frac{||A^{-1}||}{1 - ||A^{-1}|| ||B - A||}$$

• The map $\Omega \to \Omega$ defined by $A \to A^{-1}$ is continuous. Fix $A \in \Omega$ and for $B \in \mathcal{B}(A, \frac{1}{||A^{-1}||})$ write 7 $B^{-1} - A^{-1} = B^{-1}(A - B)A^{-1}$ $||B^{-1} - A^{-1}|| < (||A^{-1}||^2 ||A - B||) \qquad \forall 6 \quad \text{Green } A^{-1}|| < (||A^{-1}|| ||B - A||) \qquad \forall 7 \quad \text{Green} A^{-1}|| = (||A^{-1}|| ||B - A||) \qquad \text{Green} A^{-1}|| = (||A^{-1}|| + ||A - A||) \qquad \text{Green} A^{-1}|| = (||A^{-1}|| + ||A - A||) \qquad \text{Green} A^{-1}|| = (||A^{-1}|| + ||A - A||) \qquad \text{Green} A^{$ Get DI cont at A. which converges to 0 as $||A - B|| \rightarrow 0$

- ▲日を▲聞を▲聞を▲聞を 通じめるの

Inversion is Rational

From Linear Algebra we know more facts about A^{-1} .

For example, if A has matrix (a_{i,j}), there is a polynomial det(A) of degree n in the a_{i,j} called the determinant.

det (ac)

potion. the never

- $A \in \Omega \iff \det(A) \neq 0$
- Shows Ω is Zariski) open.

ph to

det (A) = 0 E AT euro.

・ロト・西ト・ヨト・ヨー シタクト

Formula for A^{-1}

• Given $a \in L(\mathbb{R}^n)$, let C(A) denote the matrix of cofactors of A.

A-'

• The entries of C(A) are polynomials (of degree n-1) in the entries of A.

det(A

 $\overline{C^t}$

Classical formula

• If
$$n = 2$$
 and

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} -7 \begin{pmatrix} d & -C \\ -b & q \end{pmatrix} -7 \begin{pmatrix} d & -b \\ -c & R \end{pmatrix}$$
• Then

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ 少々で

- ▲ ロ ト ▲ 国 ト ▲ 国 ト ▲ 国 ト ④ の Q ()・

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▶ ▲ ◎ ▲ ◎

• Let
$$f(h) = f(x+h) - f(x) - f'(x)h$$

• Then
 $f(x+h) = f(x) = f'(x)h + r(h)$
where $r(h)$ is "small".

► How small?

Definition of differentiability, derivative

• Let
$$U \subset \mathbb{R}^{m}$$
 be open let $f: U \to \mathbb{R}^{n}$, let $x \in U$.
• f is differentiable at x if there exists a linear transformation

$$A: \mathbb{R}^{m} \to \mathbb{R}^{n}$$
so that

$$f(x+h) - f(x) = A\underline{h} + O(|h|)$$
• Equivalent formulation:
 B_{h}
• Equivalent formulation:
 B_{h}
 $\lim_{h \to 0} \frac{f(x+h) - f(x) - Ah}{|h|} = 0$
 $A = b)h = o(h)$
 $A = b(h) = o(h)$
 $A = b(h) = 0$
 $A = b(h) = o(h)$
 $A = b(h) = 0$
 $A = b(h) = o(h)$
 $A = b(h) = 0$
 $A = b(h) = 0$

► If A exists, it is called the *derivative of f at x*

• Notation:
$$d_x f$$
 or (Rudin) $f'(x)$

o([h]) = a vector funds of h qCw OCI => [q(a)] = o Gady PCM -20 o(hl) IM 0 (A) = (2 (A)) EC \ 0 (A) = (2 (A)) EC \ 10 (A) = 0 (A) = -20 \ as h= o e four lader 1floul-flood-Ahl 20 In

▲□▶▲□▶▲□▶▲□▶ □ のへの

Partial Derivatives, Jacobian Matrix

$$f_{1,1--,2}e_m$$
 Batand beson for IR^m
 $f_{1,1--,2}e_m$ Batand beson for IR^m
 $f_{1,1}$ $f_{1,1}$

 $\frac{\gamma}{V_{X^{+}H_{Y}^{+}}} = \frac{\gamma_{H}}{\Gamma_{*}} = \frac{c_{1}c_{1}}{r_{*}}$ $f(p_{0}) = f(p_{0}) = 0$ $f(p_{0}) = 0$ $f(p_{0}) = 0$ $f(p_{0}) = 0$ Iton flyigt does'nt ens (xgl-2600)

 \mathcal{L}

 $\int \int dr = \int dr$ (VIE) m vol (5~ (1) ~) $\int_{0}^{\infty} e^{-r^{2}} V \delta \left[\int_{\alpha-1}^{\alpha-1} \left(\int_{\alpha-1}^{\alpha-1} \right) r^{\alpha-1} dr \right]$ [] かーテレテ f(r) Spraf(r) dV = f + f (r) Volme (5 (r)) dr .

・ロト・日本・日本・日本・日本・日本

Recall:Definition of differentiability, derivative

E nar

- Let $U \subset \mathbb{R}^m$ be open, let $f : U \to \mathbb{R}^n$, let $x \in U$.
- f is differentiable at x if there exists a linear transformation

fleth -fly in approximitely IR-11 linear f(yuh) fh = long in h) + ~20 faster than hun

▶ *f* differentiable at $x \Rightarrow f$ continuous at *x*.

・ロト・西ト・ヨト ・ヨー うへぐ

=? f(xthl - f(x) -20 as h-20

・ロト・日本・モート・モー シック・

Partial Derivatives, Jacobian Matrix

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

f dilf at ard r YEAR a 1+a² x2+62x2 lien er fræder . IRem A IR XERRA E CA & Nen & t2 cros 1.f :1R" y=rand - Ma (26). fir f (reso, Envi) No Z von (20) alfred eks O ZO, B/2 what's matrix 20 6015 100 (20)00 i'ch Column of matrix w- standard $(d, f) (e_c) = \frac{7}{37}$ 605.-5 ◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Suppose *f* is differentiable at *x*.

- Note that the *i*th column is the vector $d_x f(e_i)$, where $\{e_1, \ldots, e_m\}$ is the standard basis of \mathbb{R}^m .
- ► More precisely, the entries of the columns are the components of *d_xf(e_i)* in the standard basis of ℝⁿ.

 $\frac{d}{2} = \frac{d}{f} \left(\frac{d}{f} \right)$ F(x+h) - F(x) = g(f(x+h)) - g(f(x)) $g\left(f(\mathcal{A}+(f(\mathcal{A}+\mathcal{W}-f(\mathcal{A}))-g(f(\mathcal{A}))\right)\right)$ $= d g \left(f \left(x + h\right) - f \left(x\right)\right) + o \left(f \left(x + h\right) - g \left(x\right)\right)$ ▲□▶▲□▶▲□▶▲□▶ □ のへで

$$= d_{f(x)} g \left(d_{x} f(w) + o(hw) \right) + o(hw)$$

$$= (d_{f(x)} g) (d_{x} f(w) + d_{f(x)}) + o(hw)$$

$$= (d_{f(x)} g) (d_{x} f(w) + d_{f(x)})$$

$$= (d_{f(x)} g) (d_{x} f(w) + d_{f(x)})$$

$$= (d_{f(x)} g) (f(w) + hw) - g(f(y)) \Big|_{x}$$

$$= f(y)$$

$$= f(y)$$

$$= f(y) + o(hw) + o(hw)$$

$$= (d_{f(x)} g) (hw) + o(hw)$$

The Gradient $(d_x f(w) + (d_{f(x)}g)(o(h)) + o(h))$ war o ([hl] Wint $\left(\frac{O(lAl)}{Ih}\right) + O(lkl)$ dfcy) Ch

6(1|k|) = (1|k|) |k| + bon f(xa) - f(x) -

in terms of Jacobin nature

Joed metured F- at Aller & - (June & g at f (x)) (bur f et) $\left(\begin{array}{c}
 2 \\
 \overline{3}^{n}, \\
 \overline{3}^{$

$$f: W \subset \mathbb{R}^{2m}$$

$$f(w = (d \cdot f)(w + o(w))$$

$$(\frac{\partial f}{\partial f_{1}} - \frac{\partial f}{\partial f_{m}} \begin{pmatrix} h_{1} \\ \vdots \\ h_{m} \end{pmatrix}$$

$$= (\nabla f) - \frac{1}{k}$$

$$\nabla f = (\frac{\partial f}{\partial \eta} - \frac{\partial f}{\partial m})$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f)) - (\nabla_{m}(f))$$

$$d = f(\nabla f(y)) = \nabla_{f(f)} f \cdot \nabla'(f)$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f)))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f))$$

$$(h = wk \cdot \nabla f(f) = (\nabla_{f}(f) - (\nabla_{f}(f))$$

$$(h = wk \cdot \nabla f(f) + (\nabla_{f}(f$$

(c) c. hel m $F(s(4)) \equiv Consta$ d f(r Cu) 10 1 = 0 V A + 8'LA VF. 8'(+)

< ロ > < 母 > < 臣 > < 臣 > 三 の < ご</p>

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

E flu BY 9 $|f(x)-f(y)| \leq M|x-g|$ flgi -fly & office $f((k-t) \times \pm t q)$ ▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

 $d \neq ((1-t) \times + tq)$ = (d f) (g-x)

l(t)= (-t) & tty d'Itl= the phy

Scala Jungton

(f(g) - f(x) = f'(g - x)

inte

・ロト・雪・・雪・・雪 うらの

Ruden dens If(y) - f(x) If(y) - f(x)

Of Ruch C

・ロト・日本・山下・山下・ 山下・ 日・ うくの

Functions of class C^1 FILT-> IR" is of den C' Add on to (dyf ends HrEU) had the sal U - 9 L (IRM, IRM

- d_f in Continoous YERO JSZO SF. TX-ypes => [ld,f-0,f]

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Thm (clear) f E C¹

I all partial doubts of f are coming

 $d_{c}f \in \left(\frac{2f_{v}}{2\gamma_{1}}\right)$ ender cont

d d d

Inverse Function Theorem atter _ fer! $l(t) = (t-t) + t = \int df(l(t)) dt$ $\sum_{n=1}^{\infty} (d, f) (y-x) d \sigma$ 1 g Cg1-f(x) = [·] & g = x) bot [E Sildraf(1-x) at

▲日▼▲□▼▲回▼▲回▼ 回 のぐの

€ fill deco 11 (g-x) \$

5. MM. (9-50)

▲□▶▲□▶▲□▶▲□▶ □ のへで