Foundations of Analysis II Week 6

Domingo Toledo

University of Utah

Spring 2019

$$
\begin{aligned}
& \varepsilon=\int_{-\pi}^{\pi} k_{r} \cos d t
\end{aligned}
$$

$$
\begin{aligned}
& \text { abs ont. if } N>N_{\varepsilon} \\
& \frac{(M)}{(N+1)(1-\cos)} \quad \text { fo } \int_{-k}^{-2} e \int_{\gamma}^{\pi} \\
& \frac{1}{2 u c} \int_{\varepsilon}^{=} \int_{\varepsilon}^{s}|\underbrace{f\left(x_{0}\right)-f\left(r_{\sigma}-\varepsilon\right)}_{\varepsilon}| K_{N}(\epsilon, d r \\
& <\varepsilon \underbrace{\int_{-\infty}^{\delta} K_{N}^{(n)} \text { at }}_{-\delta} \\
& \text { if } \delta \text { eltren withal }(f(x)-F G A l)<\varepsilon \\
& \text {, or } 1 \times 1<5)\left(\int_{-8}^{s} 1<c\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { st. } \delta=\delta_{c} \\
& <\varepsilon \\
& \text { if } N>N_{E} \\
& <\varepsilon+\varepsilon+\varepsilon=3 \varepsilon \text {. } \\
& \text { bed \&entary } \\
& f\left(x^{+}\right), f\left(x^{-1}\right.
\end{aligned}
$$

Differentiable Functions of Several Variables

- Simplest Example:

Linear transformations $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$

- Recall Linear algebra vocabulary:
- Vector space
- Linear combinations
- Linear independence
- Span
- Basis, dimension

For finite dimensional vector spa

Basis: formerly indy
$e_{1},-y e_{\pi}$ a burn for are X
mem $\forall r \in X \quad \exists\left[\right.$! $!a_{1, \ldots}, a_{n} \in R$

$$
\begin{gathered}
x=a_{1} Q_{1}+\cdots a_{n} e_{n} \\
\underline{X}=R^{n} \quad e_{i}=\left(0-1_{i},-0\right) \\
x=\left(x_{1}, \ldots, x_{2}\right)=x_{1} e_{1}+r_{2} e_{1} \ldots x_{n} e_{n}
\end{gathered}
$$

Span

$$
\begin{array}{r}
v_{1}, v_{n} \frac{\text { span }}{X} \\
X \\
\text { eas eren } x \in X
\end{array}
$$

$i s$ a hreen ent if $v_{1} \longrightarrow v_{1}$

$$
\begin{aligned}
& \exists b_{11}, \ldots, b_{k} c \mathbb{R} \\
& \text { set, } x=b_{1} v_{1}+\cdots+b_{k} v_{k}
\end{aligned}
$$

E!! 7! bas.

$$
\begin{aligned}
& B_{\text {Gsis }} \rightarrow \text { Span } \\
& \rightarrow \text { hin indep }
\end{aligned}
$$

Leman a
H finite dimensonal
means \exists fincite spannie set.

$$
\begin{aligned}
& \text {.] }\left\{v_{1}, \ldots, v_{k}\right\} \quad \text { s. } \\
& \text { \&f } x \subset X, \exists b_{1}--k_{L} \\
& x=b_{1} r_{1}+\ldots+b_{e} r_{1}
\end{aligned}
$$

(1) dree basio
(1)

Detine $\operatorname{dim}(X)$ = \# of elemus in a bases.

Need: all bases hare
Same \#

Steinitz replace mot Thu
(exchange lemma)
\Rightarrow after possibly reormen'y

$$
-w_{1}, \ldots, w_{2},
$$

$$
\left\{v_{1}, \ldots, v_{m}, w_{m+1}, \ldots, w_{n}\right\}
$$

Spans X.

$$
\begin{gathered}
\text { One conc"1 } x \leq x \\
I=\text { index sat } \\
5=\text { panay si } \\
\# I \leq \# S \\
\Rightarrow \text { if } B_{1}, B_{2} \text { are bases } \\
\pm \frac{5}{ \pm} \\
\# B_{1} \leq A B_{2} \\
5 \quad I \\
H B_{1} \geq \# B_{2} \\
\Rightarrow \# B_{1}=\# B_{2}
\end{gathered}
$$

$$
\begin{aligned}
& w_{1} \ldots w_{i n} \text { spans }
\end{aligned}
$$

Examples of ($\mathbb{R}-$-)VectorSpaces

- Main example: \mathbb{R}^{n} :
- $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$
- Every n-dimensional vector space is isomorphic to \mathbb{R}^{n}
- Another example: $\mathcal{P}^{n} \subset \mathcal{C}(\mathbb{R}, \mathbb{R})$, the space of polynomials of degree $\leq n$.

$$
\underbrace{\text { 立 }}_{\mathcal{P}^{n}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{0}, \ldots a_{n} \in \mathbb{R}\right\}}
$$

- Similarly $\mathcal{T}^{N} \subset \mathcal{C}(\mathbb{R} / \mathbb{Z}, \mathbb{R})$, the space of trigonometric polynomials of degree $\leq N$:

$$
\begin{gathered}
\mathcal{T}^{N}=\left\{a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right): a_{0}, a_{n}, b_{n} \in \mathbb{R}\right\} \\
\text { dsm } 2 N+ノ
\end{gathered}
$$

- What are the dimensions of $\mathcal{P}^{n}, \mathcal{T}^{N}$?
- \mathbb{C}-versions (complex vector spaces)
- Take $a_{i} \in \mathbb{C}$ in definition of \mathcal{P}^{n}.
- Take $\sum_{-N}^{N} c_{n} e^{\text {int }}$ to define \mathcal{T}^{N}.

Some Infinite Dimensional Vector Spaces

$$
\begin{aligned}
& C[0,1] \\
& P=\text { prop of any asia }
\end{aligned}
$$

Every fin
Every n-dim va sp

$$
\approx \mathbb{R}^{n}
$$

Linear Transformations

- X, Y vector spaces.
- $A: X \rightarrow Y$ is a Linear Transformation

$$
\begin{array}{ll}
A(x+y)=A x+\{y & \forall x, y \in X \\
A(a x)=a(A y) & \forall\left\{\begin{array}{l}
a \in \mathbb{R} \\
x \in x
\end{array}\right.
\end{array}
$$

Examples

$$
A=i d
$$

a $x \rightarrow$ ar mot by a focalen

$$
\left\{\begin{array}{l}
P^{x} \rightarrow P^{x-1} \\
p \rightarrow p^{\prime} \\
p^{x} \rightarrow P^{x+1} \\
p \rightarrow s_{0}^{*} p^{(t / d a t}
\end{array}\right.
$$

Linear Transformations and Matrices

- X, Y finite dimensional with bases
$\left\{e_{1}, \ldots, e_{m}\right\}$ for $X, \underbrace{\left\{f_{1}, \ldots, f_{n}\right\}}$ for Y.

$$
\begin{aligned}
& x \in X, \quad x=x_{1} e_{1} t \rightarrow x_{m} e_{m} \\
& A x=\sum x_{1} \underbrace{A e_{1}}_{\in y} \cdots+x_{n} \underset{A e_{m}}{e y} \\
& A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

1 reipet to kap
Staudard bess

$$
\left(e_{1}-e_{-}\right),(f-f)
$$

$$
\begin{aligned}
& x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right) \cdot \mathbb{R}^{n} \\
& \left(\begin{array}{c}
a_{11} \\
\vdots \\
\vdots \\
a_{n} \\
a_{1 m} \\
a_{1 m} \\
x_{1} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)
\end{aligned}
$$

Columas of matre are $A e_{j}$

Invertible LinearTransformations

- X, Y finite dimensional,
- $\operatorname{dim}(X)=\operatorname{dim}(Y)$,
- $A: X \rightarrow Y$ linear.
- Then A is one-to-one $\Leftrightarrow A$ is onto.

$$
\begin{aligned}
& 181, a_{1}+-+a_{n} e_{n}=0 \\
& \Rightarrow a_{1}-=-a_{2}=6
\end{aligned} \Rightarrow A e_{1}, A e_{m} \text { bim for y }
$$

$$
A 1=1
$$

$$
\begin{aligned}
& \text { upu } \nexists a_{1}, \ldots, a_{x} \\
& \text { a, } A e_{,},+\operatorname{apan} A e_{n}=0 X \xrightarrow{A} Y \quad \operatorname{dim} X=\operatorname{din} Y \\
& A\left(a_{1} c_{1}-+b_{n} e_{n}\right)=\partial \quad\left(\Rightarrow \frac{A e_{1},-, A e_{m}}{\text { index set of } A} m \text { in } Y\right.
\end{aligned}
$$

So wory $y \subset Y \quad \exists a_{11}, a_{m} \subset R^{2}$

$$
\begin{aligned}
& \varepsilon h y=a_{1} A e_{1}+\cdots+a_{m} A e_{m} \\
& A y y^{y}=A(\underbrace{a_{1} e_{1}+\cdots+a_{m} e_{m}}_{x}) \\
& \Rightarrow x \in A_{x}=y \text { onto }
\end{aligned}
$$

$$
\begin{array}{r}
\text { dofee } A^{-1 G} A^{-1} y=x \quad A x=y \\
A A^{-1}=\text { id } y \\
A^{-1} A=\text { id } x
\end{array}
$$

The Space $\frac{L(X, Y)}{\mathcal{L}}$
步

$$
=\left\{\mathcal{A}^{1}=x \rightarrow y=\right.\text { eneni }
$$

is a vector sua

$$
\begin{gathered}
A, B \in L(x, y) \\
\Rightarrow A+B \propto L(x, y) \\
A+B)(x)=A x+B x \\
(a A)(x)=a(A x)
\end{gathered}
$$

$$
\left[|A x| \leq\|A\| x_{x} \|\right]
$$

another def of aron

$$
\begin{aligned}
& \|A\|=\operatorname{ing}\{C:|A x| \leq C|x| \\
& \forall x \in \mathbb{R}^{m \rightarrow n} \rightarrow
\end{aligned}
$$

$$
\{A,|\leqslant C| x \mid
$$

metric spaces

c Liridht- cater.

- $A \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right) \Rightarrow A$ is uniformly continuous. (In fact A is Lipschitz, with Lipschitz constant||A\|.)

$$
\varepsilon \rightarrow \delta=\varepsilon /\|/ H\|
$$

- $A, B \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right) \Rightarrow\|A+B\| \leq\|A\|+\|B\|$.
\Rightarrow "
- $A \in L\left(\mathbb{R}^{M}, \mathbb{R}^{n}\right), B \in L\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right) \Rightarrow\|B A\| \leq\|B\|\|A\|$
$\left|B A_{x}\right| \leq K B\||A x| \leq\| B\| \| A| | x \mid$

$$
\begin{aligned}
(B A x)=Q \quad|B A x| & \left.\left\lvert\, \frac{\|B\|\|A\|}{c} / x\right.\right) \\
& ||B A| \leq\|B\| A+\|
\end{aligned}
$$

- $\measuredangle\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ is a normed algebra

Inversion

- Let $\Omega=\left\{A \in L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right): A\right.$ is invertible $\}$.
- Then Ω is open.
q+ I
- N Aid d I coneiten do
ins trove.

$$
A=I+B \quad \text { the }\|B\| \text { 有 }<1
$$

$$
\begin{aligned}
& (I+B)^{-1}=\underbrace{I-B+B^{2}-B^{3}+\cdots}_{\text {crwens of }} \\
& \|B\|<1 \\
& \mid I-B+B^{n} \cdots 1 \leq 1+\|B\|\left\|^{n}\right\| B \|^{n} \cdots<\sigma
\end{aligned}
$$

A incuble $A+B=A\left(I+A^{-1} B\right)$

$$
A \in \Omega,\left[A+B:\left.\left|X_{A^{-1}}^{-1} B\right| H_{1}\right|_{C \Omega} n A^{-1} B| \rangle<1\right.
$$

- The map $\Omega \rightarrow \Omega$ defined by $A \rightarrow A^{-1}$ is continuous.

$$
\begin{array}{r}
|v|=\sqrt{y i^{2}+-2 x_{n}^{2}} 5 \\
\|A A \quad\| x \mid
\end{array}
$$

Recall Norm of $A \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$
map of metre
spaces sates

- $\|A\|=\sup \left\{\left.\frac{|A x|}{|x|} \right\rvert\,: x \in \mathbb{R}^{m}, x \neq 0\right\}$
- Equivalent: $||A||=\sup \left\{|A x|: x \in \mathbb{R}^{m},|x|=1\right\}$
- Characterization:

$$
\begin{aligned}
& \|A\|=\inf \left\{C>0:|A x| \leq C|x| \text { for all } x \in \mathbb{R}^{m}\right\} \\
& d(x, y)=|y-x| \quad \frac{|A x-A y| \leq C|x-y|}{\mid d\left(A x, A_{y}|\leq C d(x, y)|\right.}
\end{aligned}
$$

Comparison with other norms

- Suppose $A \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$ has matrix $\left(a_{i, j}\right)$
- A takes the column vector x with entries $\left(x_{1}, \ldots, x_{m}\right)$ to the column vector y with entries $\left(y_{1}, \ldots, y_{n}\right)$ given by the matrix product:

$$
\left(a_{i j}\right) \in \mathbb{R}^{2 n n}
$$

$$
\left(\begin{array}{l}
n, 1 \\
\vdots \\
\vdots=m
\end{array}\right) \rightarrow\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{d}
\end{array}\right)
$$

- Schwarz inequality gives, for each $i \in\{1, \ldots, n\}$

$$
\begin{gathered}
\text { frei } y_{i}^{2} \leq\left(\sum_{j=1}^{m_{i}} a_{i, j}^{2}\right)\left(\sum_{j=1}^{m} x_{j}^{2}\right), \\
\sum g_{l} z=\sum
\end{gathered}
$$

- summing over i get

$$
\sum_{i=1}^{n} y_{i}^{2} \leq\left(\sum_{i=1, j=1}^{n, m} a_{i, j}^{2}\right)\left(\sum_{j=1}^{m} x_{j}^{2}\right)
$$

- Thus

$$
\|A\| \leq\left(\sum_{i=1, j=1}^{n, m} a_{i, j}^{2}\right)^{\frac{1}{2}}
$$

- This inequality almost never an equality.

Natural Questions

- When is the last inequality an equality?
\qquad
Is there a formula for $\|A\|$?
if A in diagonal

$$
\left(\begin{array}{lll}
\lambda_{1} & & \\
& -A_{m}
\end{array}\right)
$$

$$
\begin{array}{r}
\|A\|=\max \{[1,1, \ldots) \cdot d d x\} \\
\neq\left(\sum \hat{L}_{1} \|^{1}\right)^{1 / 2}
\end{array}
$$

$$
\|A\|=\sqrt{\text { man }\|d\|} \text { id equeten of } A^{t} A
$$

- $A \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right) \Rightarrow A$ is uniformly continuous. (In fact A is Lipschitz, with Lipschitz constant $\|A\|$.)
- $A, B \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right) \Rightarrow\|A+B\| \leq\|A\|+\|B\| \cdot C$ indef.
- $A \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right), B \in L\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right) \Rightarrow \| B A$
$-L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$ is a normed vector space.
- $L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ is a normed algebra

Invertible Transformations

- Write $L\left(\mathbb{R}^{n}\right)$ for $L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$.
- Suppose $A \in L\left(\mathbb{R}^{n}\right)$ is invertible, so A^{-1} exists.
- $A A^{-1}=\mathbf{I}$ (the unit matrix)

- Warning: almost never equality!
- Since $x=A^{-1} A x$, get $x\left|\leq\left|\left|A^{-1}\right|\right|\right| A x \mid$
- Equivaléntly"

$$
\begin{aligned}
& |A x| \geq \frac{1}{\left\|A^{-1}\right\|}|x| \text { for all } x \in \mathbb{R}^{n} \text {. A cinverthle } \\
& \text { quantetame refinement of }|A x| \neq 0
\end{aligned}
$$

- We see:

Theorem

\bullet (A is invertible \Longleftrightarrow there exists a constant $C>0$ so that

$$
|A x| \geq C|x| \text { for all } x \in \mathbb{R}^{n}
$$

- If γ is the supremium of all such C, then

$$
\left\|A^{-1}\right\|=\frac{1}{c} \rightarrow \inf \{|A x|:|x|=1\}
$$

Inversion

- Let $\Omega=\left\{A \in L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right): A\right.$ is invertible $\}$.
- Then Ω is open.
- More precisely:

$$
A \in \Omega \text { and }\|A-B\|<\frac{1}{\left\|A^{-1}\right\|} \Rightarrow B \in \Omega
$$

- In other words, $A \in \Omega \Rightarrow \mathcal{B}\left(A, \frac{1}{\left\|A^{-1}\right\|}\right) \subset \Omega$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \nless n \\
& \text { if } 2\|A\|^{n-1}{ }^{\infty}
\end{aligned}
$$

- The norms of the partial sums are majorized by

$$
\sum_{0}^{\infty}(-1)^{n}\left(\left\|A^{-1}\right\|\|B-A\|\right)^{n}=\frac{1}{1-\left\|A^{-1}\right\|\|B-A\|}
$$

- Converges by the assumption $\|B-A\|<\frac{1}{\left\|A^{-1}\right\|}$.
- We also get the estimate (Rudin, proof of Chm 9.8)

$$
\left\|B^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|B-A\|}
$$

- The map $\Omega \rightarrow \Omega$ defined by $A \rightarrow A^{-1}$ is continuous.
- Fix $A \in \Omega$ and for $B \in \mathcal{B}\left(A, \frac{1}{\left\|A^{-1}\right\|}\right)$ write

$$
B^{B^{-1}-A^{-1}=B^{-1}(A-B) A^{-1}}
$$

- Get

$$
\begin{aligned}
& \left\|B^{-1}-A^{-1}\right\|<\frac{\left\|A^{-1}\right\|^{2}\|A-B\|}{1-\left\|A^{-1}\right\|\|B-A\|} \\
& \text { onverges to } 0 \text { as }\|A-B\| \rightarrow 0 \text { \& } \| A-8 V \rightarrow 0 \\
& B-\Gamma A \\
& \text { No cont at } A \text {. }
\end{aligned}
$$

Inversion is Rational

- From Linear Algebra we know more facts about A^{-1}.
- For example, if A has matrix $\left(a_{i, j}\right)$, there is a polynomial $\operatorname{det}(A)$ of degree n in the $a_{i, j}$ called the $\operatorname{det}\left(a_{c_{i}}\right)$ determinant.
- $A \in \Omega \Longleftrightarrow \operatorname{det}(A) \neq 0$
- Shows Ω is (Zariski) open.
pm no

$$
\begin{aligned}
& \operatorname{det}(A) \neq 0 \\
& \Leftrightarrow A^{-1} \text { errors. }
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \Omega \text { soper } \\
a=\left[A E \angle C n^{3} 2 \operatorname{det}(A) \neq 0\right\rangle
\end{gathered}
$$

Formula for A^{-1}

- Given $a \in L\left(\mathbb{R}^{n}\right)$, let $C(A)$ denote the matrix of cofactors of A.
- The entries of $C(A)$ are polynomials (of degree $n-1$) in the entries of A.
- Classical formula

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left\langle C^{t}\right]\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \rightarrow\binom{\omega / \Delta}{\omega \Delta}
$$

- If $n=2$ and
- Then

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Differentiation in Several Variables

- Setting: $U \subset \mathbb{R}^{m}$ open, $f: U \rightarrow \mathbb{R}^{n}, x \in U$.
- What does it mean for f to be differentiable at x ?
- What is the multi-variable analogue of $R \xrightarrow{f} \mathbb{R}$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{f \pi}
$$

- Problem: can't divide by $\underset{\underline{2}}{\substack{e}} \in \mathbb{R}^{m}$ for $m>1$.

$$
\begin{aligned}
& h / h \leftrightarrow 0 \\
& \frac{h^{2}}{h} \rightarrow 0 \rightarrow \text { Need }
\end{aligned}
$$

$$
a-b<n \quad a-b=0
$$

$$
\lim _{h \rightarrow 0} \frac{r(h)}{h}=0
$$

- means $r(h) \rightarrow 0$ faster than any linear function of h.
- Another notation:

$$
\begin{aligned}
& r(h)=O(|h|) \\
& f(x)=a(x) \quad \text { as } x \rightarrow 0 \\
& \frac{f(x)}{a_{x}} \rightarrow 0
\end{aligned}
$$

Definition of differentiability, derivative

- Let $U \subset \mathbb{R}^{m}$ be open. let $f: \underline{U} \rightarrow \mathbb{R}^{n}$, let $x \in U$.
- f is differentiable at x if there exists a linear transformation

$$
A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

so that

$$
\frac{f(x+h)-f(x)}{\text { formulation: }}=\frac{A \underline{h}}{B h}+O(|h|)
$$

- Equivalent formulation:

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)-A h}{h_{k}}=0 \\
& \text { (A - }-\left(\begin{array}{l}
\text {) }
\end{array}\right)=0(h) \\
& (A-B))_{\frac{k}{k}}^{\frac{k}{n}} \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& 4 A-B|l| h \mid \\
&|h|=|(A-B)| \mid-20 \\
& \Rightarrow|(A-B)|=0
\end{aligned}
$$

- If A exists, it is unique
- If A exists, it is called the derivative of f at x
- Notation: $d_{x} f$ or (Rodin) $f^{\prime}(x)$

Note: f diff at $x \Rightarrow f$ cont at x

$$
f(x+h)-f(x)=A h+o(h \mid)
$$

$$
\begin{aligned}
& o([h])=\text { a vector funds of } h \\
& \text { Larly OCflere OCI } \varphi(n) \\
& \theta(h \mid) \quad \frac{\varphi(h \mid}{|h|} \rightarrow 0 \quad \Leftrightarrow \frac{|\varphi(h)|}{|a|} \nrightarrow 0 \\
& O(h) l=\left(\frac{c l_{n}}{1 n}\right) \leq c 1 \\
& \text { as } h \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { equoiv Radn } \frac{1 f(x, m l-f(x)-f h 1}{\ln }-20
\end{aligned}
$$

Partial Derivatives, Jacobian Matrix
$e_{1, \ldots,} e_{m}$ Rand boor for \mathbb{R}^{m}

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{f\left(x+t e_{c}\right)-f(x)}{t}=\frac{2 f}{2 y_{i}}(x) \\
& \text { if } f \text { is diff at } x \\
& \frac{f\left(x+t e_{b}\right)-f(x)-\left(d_{x} f\right)\left(t e_{c}\right)}{t}=20 \\
& \frac{f\left(x_{t} t e_{b}\right)-f(y)}{t}-\left(d_{x} f\right)\left(e_{c}\right) \rightarrow 0
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial f}{\partial x_{i}}\left(x_{x 1}\right. \\
\left(d_{x} f\right)\left(e_{i}\right)=\frac{\partial f}{\partial x_{i}}
\end{gathered}
$$

Mtandard bases e_{1}, \ldots, e_{m} for \mathbb{R}^{m}

$$
\begin{aligned}
& \bar{e}_{1, \ldots}, \bar{e}_{n} \text { for } \mathbb{R}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { eyrst at } x \text { \& } d_{n} f=J a c c_{i z a r} \text { maviri }
\end{aligned}
$$

Chain Rule $d_{i} \cdot f f \rightarrow$ a's exest.

$$
\begin{array}{ll}
\frac{\psi}{\sqrt{x^{2}+y^{2}}}=\frac{x_{i}}{r}=0 \\
1= & f(x, \sigma)=1 \\
& \frac{\partial f}{\partial x}(0,0)=0 \\
f(0, y)=0 . & \frac{\partial f}{3 x}(0,0)=0
\end{array}
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{-\pi} \phi=\sqrt{\pi} \\
& f(r) \quad \int_{\mathbb{R}^{n}} f(r) d V \\
& =\int_{0}^{+\infty} f(r) \underbrace{\operatorname{vod} l_{\text {mor }}\left(S^{n+1}(r)\right.} d r
\end{aligned}
$$

Recall:Definition of differentiability, derivative

- Let $U \subset \mathbb{R}^{m}$ be open, let $f: U \rightarrow \mathbb{R}^{n}$, let $x \in U$.
- f is differentiable at x if there exists a linear transformation

$$
A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

so that

$$
\overrightarrow{f(\vec{x}+\vec{h})-\vec{f}(\vec{x})=\overrightarrow{A A}}+o(|\vec{h}|)
$$

$\mathbb{R} \rightarrow-10$
$f(x+h l-f(y)$ in approxinately linear

- If A exists, it is unique

- If A exists, it is called the derivative of f at x
- Notation: ${d_{x} f}^{f}$ or (Rudin) $f^{\prime}(x)$.
- $d_{x} f$ is the best linear approximation to f at x.
- f differentiable at $x \Rightarrow f$ continuous at x.

$$
\begin{aligned}
& f(x \operatorname{ch})-f(x) . \\
& =\underbrace{A h}_{20} x^{2(\ln n})
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow f(x+h)-f(y) \rightarrow 0 \\
\text { as } h \rightarrow 0 \\
\Longrightarrow \text { Cont at } y
\end{array}
$$

Partial Derivatives, Jacobian Matrix
f differentiable at $x \Rightarrow$ all partial derivatives of f at x
exist.

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{i}}(x)=\lim _{t \rightarrow 0} \frac{f\left(x+t e_{i}\right)-f(x)}{t} \\
& \left.=\lim \frac{d_{f} f\left(k e_{c}\right)^{\prime}}{t}+(0(t))^{\prime}\right) \longrightarrow 0
\end{aligned}
$$

$$
=\left(d_{x} f\right)\left(e_{2}\right)
$$

- Warning: Existence of partials \nRightarrow differentiable.
- Example: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by
ex lest fine not correct

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ & 0 \text { if }(x, y)=(0,0)\end{cases}
$$

- $f(x, 0)=0$ for all $x \Rightarrow \frac{\partial f}{\partial x}(0,0)=0$.
- Similarly $\frac{\partial \digamma}{\partial y}(0,0)=0$.
- But $f(x, x)=\frac{1}{2}$ for $x \neq 0 \Rightarrow f$ not continuous at $(0,0)$.
$f(x, y)$ constant on eco lime treas 0
- Suppose f is differentiable at x.
- $d_{x} f\left(e_{i}\right)=\frac{\partial f}{\partial x_{i}} \Rightarrow$ the matrix of $d_{x} f$ is the Jacobian matrix

$$
\begin{array}{cccc}
\frac{\partial}{2 x^{c}} & \partial f_{n} \\
\dot{f} & ! & \\
\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{m}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{m}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{m}}
\end{array}\right)
\end{array}
$$

- Note that the $i^{t h}$ column is the vector $d_{x} f\left(e_{i}\right)$, where $\left\{e_{1}, \ldots, e_{m}\right\}$ is the standard basis of \mathbb{R}^{m}.
- More precisely, the entries of the columns are the components of $d_{x} f\left(e_{i}\right)$ in the standard basis of \mathbb{R}^{n}.

Chain Rule

$$
\begin{aligned}
& d_{k} F=d_{f(x)} g\left(d_{k} f\right) \\
& F(x+h)-F(x)=g(f(x+h)-g(f(x)) \\
& g\left(\underline{f(g)}+\frac{(f(x+h)-f(x)}{k}\right)-g(f(x)) \\
& =d_{f(x)} g(f(x+k)-f(x))+o(|f(k+1) \cdot(k)|
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& =d_{f(x)} g\left(d_{x} f(h)+\sigma(\mid h i)\right)+\sigma(|h|) \\
& =\underbrace{\left(d_{f(x)} g\right)\left(d_{x} f l(h)+d_{f(x)} g(0(h))+o(n k)\right.}_{1}
\end{aligned} \\
& \theta(|h|) \\
& d_{f_{f(x)}} g\left(\frac{0(h i x)}{\operatorname{Ln})}\right) \\
& \text { じ } \downarrow_{0} \\
& \begin{array}{c}
F(x+h)-F(x)=g(f(x)+k)-g\left(f(y) \left\lvert\, \begin{array}{c}
k= \\
=f(n+h) \\
-f(x)
\end{array}\right.\right.
\end{array} \\
& \left(d_{f(x)} g\right)(h)+o(\mid k l) \quad k=k(A, k) \\
& k=f\left(x+h i-f(x)=\delta d_{x} f\right)(\text { hi })+6(\ln) \\
& =\left(d_{f(T)} \quad \text { g. }\right)\left(d_{x} f(h)+o(\mid h)^{\prime}\right)
\end{aligned}
$$

The Gradjent
in terms of J acohire natures

Gpeot vretere of F at (f) x

$$
\begin{aligned}
& =\text { (fret of } g \text { at } f(x)) \text { (bur } f \text { ot } y \\
\binom{\frac{\partial F}{2 x}}{\vdots} & =\left(\begin{array}{c}
\frac{2 a_{1}}{\sigma g_{1}} \\
\vdots \\
\partial
\end{array}\right)
\end{aligned}
$$

chmules $\gamma(t)=\left(x,(t), \ldots, x_{m}(t)\right)$

$$
\frac{d}{d x} f(r(t))=\nabla_{r(c)} f=r^{\prime}(s)
$$

in pecan $x_{0} \in U$

$$
x_{0}+t v \quad\|v\|=1
$$

$$
\left.\operatorname{chcof}_{\substack{\operatorname{det}}} f\left(x x_{0}+t v\right)\right|_{t=0}
$$

$$
=\left(\nabla_{x_{0}} f\right) \cdot v
$$

directeons derio
of f at y_{0} in dexedery iv

$$
\begin{aligned}
& f: \mathbb{N} C \mathbb{R}^{2 n} \longrightarrow \mathbb{R} \\
& f(x+h)-f(-1)=\left(d_{0} f\right)(h \mid+0(|h|) \\
& \left(\frac{\partial f}{\partial \dot{q}_{1}} \cdots \frac{\partial f}{\partial r_{m}}\right)\binom{h_{1}}{\dot{h}_{m_{m}}} \\
& =(\vec{\nabla} f) \cdot \vec{h} \\
& \vec{\nabla} f=\left(\frac{\partial f_{1}}{\partial r_{1}}-\frac{\partial f}{\partial r_{m}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \gamma(t) c \operatorname{hel} m \\
& \Rightarrow f(\gamma(t)) \equiv \operatorname{const} \\
& \frac{d}{m} f(f(0)) \equiv 0 \\
& \begin{aligned}
\nabla_{\gamma} f(G) & \gamma^{\prime}(t)
\end{aligned}=0 \nabla_{\gamma(f)}^{f}+\gamma^{\prime}(\theta)
\end{aligned}
$$

$\| d f| |$ bounded \Rightarrow Lipschitz
Theorem
$U \subset \mathbb{R}^{m}$ open and convex, $f: U \rightarrow \mathbb{R}^{n}$ differentiable.
Suppose there is constant M such that

$$
\left\|d_{x} f\right\| \leq M \text { for all } x \in U
$$

then

$$
|f(y)-f(x)| \leq M|y-x| \text { for all } x, y \in U .
$$

U $\forall x,>\in U, \overrightarrow{x y} \subset U$

$$
\left\{(1-t)^{\prime \prime} x+t y \quad i \quad 0 \quad \varepsilon+51\right\}
$$

$$
\begin{gathered}
\frac{|f(x)-f(g)| \leq M|x-g|}{f(g)-f(x)} \\
f((t-t) x+t y)
\end{gathered}
$$

$$
\begin{array}{ll}
\frac{d}{d t} f((1-t) x+t y) & l(t)=(-t) x+t y \\
& =l_{l(4)}^{(d)(y-x)}
\end{array}
$$

f scelen funstan

$$
\text { Ftk } \quad f(y)-f(x)=f^{\prime}(\xi)(y-x)
$$

Rushon duns

$$
\left\{\begin{array}{l}
|f(y)-f(x)| \\
\sum M(y-x)
\end{array}\right.
$$

$$
\begin{array}{r}
\left\lvert\, f(y)-f(x) \leq \frac{m}{F}(y-x)\right. \\
\left(f^{\prime}(x, x)\right) \leq x
\end{array}
$$

$$
\text { cla for } f: \pi \rightarrow \mathbb{R}
$$

Theorem
$U \subset \mathbb{R}^{m}$ open and convex, $f: U \rightarrow \mathbb{R}^{n}$ differentiable.
Suppose that
then f is constant.

$$
\rceil d_{x} f=0 \text { for all } x \in U
$$

$$
\underline{\underline{\mid f(g)})-(q-a \mid} \leqslant \mathcal{O}|a-\lambda|=\sigma
$$

Connected enough
6^{1} Ruch 6^{\prime}

Functions of class \mathcal{C}^{1}
$f: U \rightarrow \mathbb{R}^{n}$ is of den C^{\prime}
\Leftrightarrow * did on $\bar{U}\left(d_{x} f\right.$ ens

$$
\forall x \in U S
$$

and the nab

$$
U \rightarrow L\left(\mathbb{R}^{m}, \mathbb{R}^{W}\right.
$$

$x \longrightarrow d_{x} f$
is continaous

$$
\forall \varepsilon)_{0} \exists \delta=0 \text { sh } \sqrt{\mid x-y k<\delta} \Rightarrow \overparen{\left\|d_{x} f-a_{x} f\right\|}<\varepsilon
$$

Thm (clear) $f \in C^{1}$
\Leftrightarrow all pratoal drowhs of f are cormes
$\underline{d_{E} f} \Leftrightarrow\left(\frac{\partial f_{r}}{\partial y_{2}}\right)$ untion cont
$\downarrow \downarrow \quad \downarrow$

Inverse Function Theorem

$$
\begin{aligned}
& L a+\text { er } f \in c^{\prime} \\
& l(t)=(1-x)+x^{+4} f(g)-f(x)=\int_{0}^{1} \frac{d f(l(t))}{t^{2}} d t \\
& =\int_{0}^{1}\left(l_{l(y)} f\right)(y-x) d \sigma
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{1}^{1}\left|d x_{0} f^{\prime}(y-y)\right| \text { at }
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{d}\left\|_{\varepsilon m} d_{\text {aco }}\right\|(y-x) \\
& \text { 4. } \mid(y-x \mid
\end{aligned}
$$

