Foundations of Analysis II

Week 4

Domingo Toledo

University of Utah

Spring 2019

First 15 terms of $\sum \frac{1}{1+n^{2} \times}$ on $[-0.08,0.02]$

$$
\sum_{n=1}^{15} \frac{1}{1+n^{2} x} \text { on }[-0.08,0.02]
$$

Power Series

- Recall Root Test for $\sum_{n=1}^{\infty} a_{n}$
- Comparison with geometric series

$$
\begin{aligned}
& \operatorname{lin}\left|a_{1}\right|^{1 / h}<1 \Leftrightarrow \forall r>\operatorname{lin}\left|a_{n}\right|^{\prime s} \\
& \left|a_{a}\right|^{k_{n}}>\text { r from form } m \\
& +r<1 \nexists N \quad \text { fin } x \geq \\
& \left|a_{n}\right|^{t_{n}}<r \Leftrightarrow\left|a_{a}\right|<r^{n} \\
& \text { Compar } \sum r^{n} \rightarrow \frac{1}{1-r} \text { \& } 0 \leq r<1 \text {. }
\end{aligned}
$$

- Radius of convergence

$$
\begin{aligned}
& R=\frac{1}{\lim \sup \left(\left|a_{n}\right|^{\frac{1}{n}}\right)} \\
& \lim \left(\left|a_{n} x^{n}\right|^{1 / n}\right)=\underbrace{\lim \left|a_{a}\right|^{1 / n}|x|}<! \\
& |x|<\sqrt{\frac{1}{\ln \left(a_{x}\right)^{1 / x}}}=R
\end{aligned}
$$

abs convergence if $|x|<R$
divergence if $|x|>R \quad|x|=R 7$

- For every $\epsilon>0$ uniform and absolute convergence on
\square
-R+ $-R-\epsilon]$

$$
R>0, \sum_{d f_{n} x^{x} \text { a fuet.0 on }|x|<R}
$$

$$
\begin{aligned}
& \text { defines diff } \\
& \text { - If } f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \text {, then } \\
& 1 x \mid \angle R \\
& f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
& \left\{g_{m}\right\} \quad g_{n}^{\prime} \rightarrow h, g_{x}\left(g_{B}\right) \operatorname{an}
\end{aligned}
$$

$$
\begin{aligned}
& R \text { for }\left|a_{n}\right|^{1 / x} \\
& \text { Same } \\
& \text { (for f } f^{\prime} \\
& \lim \left(n a_{a}\right)^{1 / x} \operatorname{ces}^{n} n^{1 / 2}|a|^{1 \prime \prime} \\
& =\text { Theralk }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Yearn } \rightarrow \text { end on }[R-\zeta, R H E] \\
& \Rightarrow f \text { is diff and } f^{\prime}=\sum_{a=1}^{\infty} x \varepsilon_{a} x^{x}
\end{aligned}
$$

- Iterate: Taylor series.

$$
\begin{aligned}
& f(x)=\sum a_{2} x^{2} \\
& f^{\prime}(y)=\sum x a_{n} r^{n-1} \\
& f^{\prime \prime}=\sum x(x-) a_{n} x^{n-2} \\
& ! \\
& a_{n}=\frac{f^{(x)}(0)}{n!} \ldots
\end{aligned}
$$

$$
\sum a_{n}\left(\left(x \sim x_{0}\right)^{x}+x\left(x-\varepsilon_{0}\right)^{n-1} \cdot x_{0}+\frac{x(x-1}{2}\left(x-x_{0}\right)^{n-2} x_{0}^{2} L\right)
$$

rearrange $\sum b_{m}\left(x-x_{1}\right)^{m}=$
Theorem
$m \quad 11 \ldots m$
Suppose $\sum_{n=0}^{\infty} a_{n} x^{n}$ has radius of convergence $R>0$ and suppose that

$$
\left\{x \in(-R, R): \sum_{0}^{\infty} a_{n} x^{n}=0\right\}
$$

has a limit point in $(-R . R)$. Then $a_{n}=0$ for all n.

$$
(
$$

$$
\begin{aligned}
& \text { "the zr of } \\
& \text { Fare isolated, }
\end{aligned}
$$

pf. soppose $x_{0} \in(-R, R)$ is a

$$
f\left(x_{0}\right)=0
$$

Let $f(x)=\sum_{m=1}^{\infty} b_{m}\left(x-y_{0}\right)^{m}$ emm

Suppose aot a ll bm $=0$

$$
\begin{aligned}
& \exists \text { smeter } b_{m_{m}} \neq 0 \\
& b_{m_{0}} \\
& b_{m_{0}}\left(x-x_{0}\right)^{m_{0}}+\text { hyav } \\
& =\left(x-y_{0}\right)^{m}\left(b_{m_{0}}+\cdots\right) \\
& =\left(x-x_{0}\right)^{m_{0}} g(x) \quad g\left(x_{0}\right) t_{0}
\end{aligned}
$$

$$
\begin{aligned}
& f\left(x_{0}\right)=0 \\
& \underbrace{f(x)=\underbrace{\left(x-x_{1}\right)^{s_{0}} g(x)}_{g\left(x_{0}\right) t_{0}}}_{\theta_{0} \ln x_{1} r_{0}} \\
& 7 \varepsilon>0 \text { st } f(x) \neq 0 \text { if } O K\left\{\left|x-x_{d}\right|<\varepsilon\right.
\end{aligned}
$$

22 x_{0} nat a $1 \mathrm{~m} f$ dot 16

$$
-\{8: f(y)=0\}
$$

if sum $a_{n} \neq 0 \Rightarrow$ que have wo har at
Cuntrame.

$$
\text { all } a_{n}=0 \text {. lont wertan }
$$

Usei
f, g ant Nh by h hawn is

$$
\text { in }(-R, R)
$$

$\sum x: f(x)=g(x)$ has a lut pt. en $(-R, n$ ne

$$
\Rightarrow f \equiv g \text { on }(-R, n)
$$

Gun functiom reen hy pown serier arecalled
(real) analytic
real anclytic $\Rightarrow \infty$ many dreus C^{∞}

"Nihoatius strips"
"ware equation"
Mann
diff

$$
\begin{aligned}
& {\left[\begin{array}{l}
u(0, t)=u(L, t)=0 \quad \forall t \\
u(x, 0)=\operatorname{son} \\
u_{t}(x, 0)=\operatorname{ran}
\end{array}\right]_{t}} \\
& u_{t t}=c^{2} u_{\text {un }} \text { "ware et" }
\end{aligned}
$$

Separation of wa:
try

$$
\begin{aligned}
& u_{(x, t)}=X(x) T(t) \\
& u_{x y}=X^{\prime \prime}(x) T(t) \\
& u_{x r}=X(x) T^{\prime \prime}(t) \\
& u_{t t}=c^{2} u_{x y} \\
& x T^{\prime \prime}=c^{2} X^{\prime \prime} T \\
& \frac{T^{\prime \prime}}{T}=c^{2} \frac{x^{4}}{x} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { y fuct } & 1 \\
\text { bey }
\end{array} \\
& =\Rightarrow \text { conchar } \\
& \text { d } \\
& T_{T}^{\prime \prime}=d=c^{2} \frac{x^{\prime \prime}}{x} \\
& T^{\prime \prime}=d T \quad X^{\mu}=d c^{2} X
\end{aligned}
$$

$$
\begin{aligned}
& \text { e, } \\
& \begin{array}{c}
d .20 \\
\cosh (\sqrt{d} t)
\end{array} \\
& \operatorname{sun}\left(r_{t} t\right) \\
& \lambda<0 \quad\binom{\sin (-\sqrt{d} t),}{\sin (-\sqrt{d})} \\
& \begin{array}{l}
u(x, t)=0 \\
u(L, \theta)=0
\end{array}>\text { Eugrus } \\
& \sin \left(\frac{\$ 2 \pi t}{L}\right) \\
& \sum \sum \sin \left(\frac{\pi h t}{L}\right) \circ(\cdots \pi)
\end{aligned}
$$

Firmes sas.

Back to Fourier Series

- Recall $L^{2}[a, b]$
- Space of complex functions on $[a, b]$ with

$$
\int|f(x)|^{2} d x,<\infty
$$

(Eventually need Lebesgue integral)

- Inner product

$$
(f, g)=\int_{a}^{b} f(x) \overline{g(x)} d x
$$

- Recall ON system $\left\{\phi_{n}\right\}$ on $[a, b]$:

$$
\int_{a}^{b} \phi_{m}(x) \overline{\phi_{n}(x)} d x=\delta_{m, n}= \begin{cases}0 & \text { if } m \neq n \\ 1 & \text { if } m=n\end{cases}
$$

- If $f \in L^{2}[a, b]$ can associate a "Fourier series"

$$
f(x) \sim \sum_{n=1}^{\infty} c_{n} \phi_{n}(x)
$$

where

$$
c_{n}=\int_{a}^{b} f(x) \overline{\phi_{n}(x)} d x
$$

$$
[a, b]
$$

$$
f:[a, b] \rightarrow \mathbb{E}
$$

gos

$$
\int_{a}^{b} \mid f\left(\left.x\right|^{2} d x<\infty\right.
$$

"

$$
L^{2}[a, b]^{\prime \prime}
$$

T_{0} be precise, need the Lebessue integral
Tor time benss, Rremonnyrertest
Rank, the completonn of $C[a, b]$

$$
\text { in }\|f\|,=\int_{a}^{b}|f(x)| d x
$$

- Lebessue integreble funcs
(largar than R-integrable)

$$
L^{2}[a, b]
$$

(1)-vector shace "1, inner poodoct)

$$
\begin{aligned}
& (f, g)=\int_{a}^{b} f(x) \overline{g(x)} d x \\
& \text { in } \mathbb{C} \cdot \begin{array}{c}
z_{1} w \in \mathbb{C} \\
z w
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& z \bar{z}=\|z\|^{2} \\
& \left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \\
& |z|^{2} \\
& \left(w_{1}, v_{2}\right) \in \mathbb{Q}^{R} \\
& z_{1} \overline{w_{1}}+z_{2} \overline{w_{c}} \\
& \mathbb{R}^{n} \\
& \left.\left.\left(x_{1}\right)-\right)_{n}\right)\left(x_{1}-x_{1}\right) \\
& z_{1} \overline{5}_{1}+z_{2} \bar{z}_{c}=\left.\left|z_{1}\right|\right|^{2}+\left|z_{2}\right|^{2} \\
& =\left\|\mathbb{E}_{\|, E}\right\|^{2} \\
& =x, y_{1}+t^{2} y_{n}
\end{aligned}
$$

ON $\quad\left(v_{(i,}, v_{\gamma_{i}}\right)=\delta_{i j}=\left\{\begin{array}{lll}1 & \zeta i=j \\ 0 & i \\ i \neq j\end{array}\right.$

$$
\begin{aligned}
& (v, v)=0 \Leftrightarrow v \perp w \\
& (v, v)=1 \Leftrightarrow v v \|=
\end{aligned}
$$

in R^{s}

ON system

Worm ; lengels
inner prod; lengths \& andy

$$
\|\nabla\|^{2}=(v, \infty)
$$

"Linear Algebra" and "Euclidean Geometry" give

- Let

$$
s_{n}(f)=s_{N}(f, x)=\sum_{n=1}^{N} c_{n} \phi_{n}(x)
$$

be the $N^{\text {th }}$ partial sum of the Fourier series, and let

$$
<\phi_{1}, \ldots, \phi_{N}>
$$

denote the span of $\phi_{1}, \ldots, \phi_{N}$ in $L^{2}[a, b]$

- Then $s_{N}(f)$ is the vector in $<\phi_{1}, \ldots, \phi_{n}>$ closest to f.

$$
v \in \mathbb{R}^{s}\left(v-a_{1} v_{1}+a_{2} v_{2}\right)+v_{1}<v_{2}
$$

$$
\begin{aligned}
& \left.v v_{1}-a_{1} v_{1} v_{1} \cdot v_{1}-a_{2} v_{2} \cdot v_{1}\right)=v \\
& v_{c_{k}} \cdot v_{2}-a_{1} v_{1} \cdot v_{2}-a_{2} v_{2} \cdot v_{2}=\infty \\
& v_{1} v_{1}=a_{1} \quad v_{1} v_{n}=a_{2}
\end{aligned}
$$

$v \quad\left(v, v_{1}\right) v_{1}+\left(v, v_{2}\right) v_{2}$
"\& proy of v on

$$
(1,)\left\{v_{s}\right\}
$$

$$
\begin{aligned}
& \text { proy of } \\
& \left\langle v_{11} v_{2}\right\rangle=\operatorname{sen} \text { of } v_{1}, v_{2}
\end{aligned}
$$

$$
\left\langle v, \ldots, v_{n}\right\rangle
$$

forfous ON system $\left\{\varphi_{x}\right\}$
to f.

$$
f \Leftrightarrow S_{N}(f)=\sum c_{n} \varphi_{n}
$$

$$
\begin{aligned}
c_{n} & =\left(f, \varphi_{n}\right) \\
& =\int_{n}^{b} f_{n} \overline{\varphi_{n}(n) \varphi_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\varphi_{n}, \varphi_{n}\right)=\int_{\mathrm{Cas}_{s}} \varphi_{n}\left(\begin{array}{rl}
n \\
\varphi_{n}(n) \\
n
\end{array}\right. \\
& =\delta_{\text {n }, ~} \\
& f \sim \sum c_{n} \varphi_{n} \\
& c_{n}=\int_{0}^{y} f(x) \widetilde{\varphi_{x}(x)} h_{y} \\
& \left\langle\varphi_{1}, \ldots, \varphi_{N}\right\rangle \quad \sum_{n=1}^{w} c_{n} \varphi_{n}=v e l_{n} \\
& \text { in }\left\langle\varphi_{, 1}, \varphi_{W}\right\rangle c^{\text {cosen }}
\end{aligned}
$$

Equivalent formulations:

$$
\begin{aligned}
& \text { - If } t_{N} \in<\phi_{1}, \ldots, \phi_{N}>\text {, then }\left\|f-t_{n}\right\|^{2} \geq\left\|f-s_{N}(f)\right\|^{2} \\
& \text { - } f-s_{N}(f) \perp<\phi_{1}, \ldots, \phi_{N} \\
& \text { Mf- } \sum \gamma_{2} \varphi_{n} \|^{2}
\end{aligned}
$$

$$
\int f=\vec{k} N l^{2}=
$$

$$
\begin{aligned}
& \left|f-s_{N}\right|^{2} \leq\left\|f-t_{N}\right\|^{2} \\
& \left\|f-t_{n}\right\|^{2}=\left\|f \int_{N}\right\|^{2}+\left\|t_{N}-\rho_{N}\right\|^{2} \\
& \left(f-t_{x}, f-t_{x}\right)^{n} . \\
& f-t_{N}=f-S_{N}+S_{N}-t_{V} \\
& \left(f-t_{N} ; f-t_{N}\right)=\left(\begin{array}{c}
\left(f-s_{N}\right)+\left(s_{N}-t_{N}\right),\left(f-s_{N}\right)+\left(\cos _{n}+t_{N}\right) \\
-
\end{array}\right. \\
& =\left\|f-S_{N}\right\|^{2}+\left\|S_{N}-t_{N}\right\|^{2}+2\left(\underset{v_{0}}{\left(\sim-S_{N}, S_{N}\right.}\right.
\end{aligned}
$$

$$
\left.f-\Omega_{N},<\varphi_{1,-}, \varphi_{N}\right]
$$

$$
\begin{gathered}
S_{N} N \rightarrow \infty \\
\left\|S_{N}\right\|^{2} \leq \| f h^{2} \\
\sum \mid a_{N}\left\|^{2}<\right\| f \|^{2}
\end{gathered}
$$

They imply Bessel's inequality

$$
\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \leq \int_{a}^{b}|f(x)|^{2} d x
$$

- So $f \in L^{2}[a, b] \Rightarrow\left\{c_{n}\right\} \in \ell^{2}$
- Ideal situation: this correspondence is an isometry between $L^{2}[a, b]$ and ℓ^{2}.

This is the case for usual Fourier series, see Thm. 8.16 in Rudin.

$$
\begin{aligned}
& L_{z}^{2}[a, b] \\
& \text { Shace fundu } \\
& l^{2}, c_{1}, e_{2} \text { ? } \\
& \sum\left|c_{n}\right|^{2}<\infty
\end{aligned}
$$

$$
\approx \approx \text { space of squmer. }
$$

U~ \mathbb{H}_{2} Conversice of Fouriersus

$$
\begin{aligned}
& \| c_{n} e^{[n \theta} \rightarrow \mathbb{L}_{2}(-\pi, \pi]_{f} \in \\
& L^{2}(-\pi, \pi) {\left[\left.c_{n}\right|_{-\infty} ^{\infty}\right.} \\
& \pi\left|a_{n}\right|^{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& \left(\int\left(\left.f\right|_{\alpha} ^{2}\right)^{1 / 2} \quad\left(\int|f|\right)\right. \\
& \int_{a}^{b}|f| d x=\int_{a}^{b}|f| \cdot 1 d x \\
& \Sigma\left(\int_{a}^{h}|f|^{2} \alpha a\right)^{1 / 2}\left(\int_{a}^{b} 1^{2} d x\right)^{1 / 2} \\
& =\|f\|_{2}^{2}(b-a)^{1 / 2} \\
& K f\left\|_{!} \leq \sqrt{b-a}\right\| f \|_{a}
\end{aligned}
$$

Trigonometric Series

Usual normalization for trigonometric series:

$$
f(x) \sim \sum_{-\infty}^{\infty} c_{n} e^{i n x}
$$

- where

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

- This formula for c_{n} is correct because

$$
\int_{-\pi}^{\pi} e^{i m x} e^{-i n x} d x=2 \pi \delta_{m, n}= \begin{cases}0 . & \text { if } m \neq n \\ \widetilde{2 \pi} & \text { if } m=n\end{cases}
$$

- Observe that $\int_{0}^{2 \pi}$ or $\int_{a}^{a+2 \pi}$ for any a would work as well.
- The associated ON system is

$$
\left\{\frac{e^{i n x}}{\sqrt{2 \pi}}\right\}
$$

but it's convenient to use the $e^{i n x}$ instead.

$$
C_{x}=\frac{1}{i_{i}} \int f\left(C_{\psi}\right) e^{-i-y}
$$

L^{2} and ℓ^{2}

- Would like isomorphism.
- Would like to understand other forms of convergence.

Real Trigonometric Series

- If $f f$ if real. then

$$
\overline{c_{n}}=\overline{\int_{-\pi}^{\pi} f(x) e^{-i n x} d x}=\int_{-\pi}^{\pi} f(x) e^{-i(-n) x} d x=c^{\boldsymbol{\theta}}
$$

- So combining n and $-n$ terms in $\sum_{n=-N}^{N} c_{n} e^{i n x}$ get

$$
c_{0}+\sum_{n=1}^{N}\left(c_{n} e^{i n x}+c_{-n} e^{i(-n) x}\right)=c_{0}+\sum_{n=1}^{N}\left(c_{n} e^{i n x}+\overline{c_{n} e^{i n x}}\right)
$$

- Let $a_{0}=c_{0} \in \mathbb{R}$.
- For $n=1, \ldots, N$, let $a_{n}, b_{n} \in \mathbb{R}$ be defined by

$$
2 c_{n}=a_{n}-i b_{n}
$$

- Then

$$
\sum_{-N}^{N} c_{n} e^{i n x}=\underbrace{a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)}_{n}
$$

- $e^{c m_{y}} \quad m=1$

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x
$$

- for $n>0$

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x
$$

- and

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
$$

Dirichlet Kernel

- How to sum $s_{N}(f, x)=\sum_{-N}^{N} c_{n} e^{i n x}$
- Put in definition of c_{n} and rewrite

$$
C_{2}=\frac{1}{\varepsilon_{\pi}} \int_{-\pi}^{\pi} f(x) e^{-i \pi y}
$$

$$
S_{N}\left(f_{i} x\right)=\sum_{-N}^{N}\left(\frac{1}{y} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t\right) e^{\text {in }}=\sum_{-N}^{N}\left(y \int_{-\pi}^{\pi} f(t) e^{i n(x-t)} d t\right)
$$

- Same as

$$
\int_{-\pi}^{\pi} f(t)\left(\sum_{-N}^{N} e^{i n(x-t)}\right) d t /=\int_{-\pi}^{\pi} f(x-t)\left(\sum_{-N}^{N} e_{r}^{i n t}\right) d t
$$

$$
D_{N}(t)=\sum_{-N}^{N} e^{i n t}
$$

is called the Dirichlet Kernel.

- A more useful expression

$$
D_{N}(t)=\frac{\sin \left(\left(N+\frac{1}{2}\right) t\right)}{\sin \left(\frac{t}{2}\right)}
$$

$$
\sum_{N}(x)=\int_{-\pi}^{t \pi} f(x-t) D_{N}(t) d t
$$

$$
\begin{aligned}
& \sum_{-N}^{N} e^{i \operatorname{in} x}=\frac{\sin (N+/ / 2) x)}{\sin (x / 2)}
\end{aligned}
$$

$$
\begin{aligned}
& e_{-}^{-c \cdot\left(v_{0} \varepsilon \mid r\right.} \ldots \ldots e^{a}
\end{aligned}
$$

$$
\begin{aligned}
& e^{c i x}, 2 D_{N}(x)-e^{-i \xi \xi} D_{N}(x) \quad e^{i d / 2}-e^{-c i \xi}=2 i \sin x / 2 \\
& =e^{i\left(\left(1+L^{\prime} \varepsilon\right) x\right.}-e^{x^{\prime}(v+/ 2) x}=2 c^{\prime} \operatorname{sen}\left(r+c_{2}\right) x \\
& D_{N}(x)=\frac{\sin (\alpha N+\varphi) x)}{\operatorname{sen}(x / 2)}
\end{aligned}
$$

$D_{N}(T)$ over 3 periods for $N=3,5,7$:

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{N}(x) d x=1 \quad \int_{-N}^{N} e^{i n} x=2 \pi
$$

$$
\begin{aligned}
& S_{N}(f, y)-\frac{1}{i_{\pi} \pi} \int_{-\pi}^{\pi} f(y-\epsilon) D_{N}(H d r \\
& ? 1 \\
& f(x \\
& f(x)=\frac{1}{\lambda_{1}} f(x) D_{N} \text { (f)dt } \\
& f(x)-S_{N}\left(f_{1} x\right)=\frac{1}{1_{\pi}} \int(f(x)-f(x-t)] d_{N}(t) d t
\end{aligned}
$$

Thn $\sin x \in[-\pi, \pi] \quad S G$ $\exists \delta>0, M>0$ conents st $|f(x-t)-f(x)| \leq M(t)$ on $|t|<\delta$

$$
\Rightarrow \quad S_{n}(f, x) \rightarrow f(x)
$$

$$
\begin{aligned}
& \left.\int f(x)-S_{N}(f, x)\right] \\
= & \sum_{n_{N}=}^{2} \int_{-\pi}^{\pi}(f(x)-f(x+t)) D_{N}(t) d t \mid \\
= & \left.\int^{1} \frac{1}{2 \pi} \int(f(x)-f(x-t)) \frac{\sin \left(\left(N+\frac{1}{2}\right) t\right)}{\sin (2 / 2)} d t \right\rvert\,
\end{aligned}
$$

$$
1 \frac{1}{216} \int \underbrace{\left(\frac{f(x)-f(x-t)}{\sin \left(t c_{2}\right)}\right)} \underbrace{\operatorname{sen}\left(N+1_{\varepsilon}\right) t}_{\text {sin } N+\cos t_{c}+\cos N t \sin t_{r}} d t
$$

pust

$$
\delta \int \frac{f(x d-P C}{\sin \sin } \int_{M}^{\operatorname{crn} N t \cos t}
$$

$$
\sin t / 2 \sim^{t h} \frac{f(y)-s(x-v e}{\sin t / 2}\left(\operatorname{sen} N \cot t l_{2}\right)
$$

Recall:

Theorem

Suppose that f is Riemann integrable and that for some x there are constants $\delta>0$ and $M>0$ so that

$$
|f(x+t)-f(x)| \leq \underline{\sim}|t|
$$

holds for all $t \in[-\delta, \delta]$. Then

$$
\lim _{N \rightarrow \infty} s_{N}(f ; x)=f(x)
$$

- Recall

$$
\frac{\left(s_{N}(f ; x)=\frac{1}{2 \pi} \int f(x-t) D_{n}(t) d t\right.}{=}
$$

is Dirichlet's Kernel, and

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{N}(t) d t=1
$$

- Thus

$$
\underbrace{\substack{s_{N}(f ; \underline{x})-f(x) \\ \ddots_{n}}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(f(x-t)^{\circ}-f(x)\right) \frac{\sin \left(\left(N+\frac{1}{2}\right) t\right)}{\sin \left(\frac{t}{2}\right)^{n}} d t
$$

$$
\begin{aligned}
& \sin \left(\left(N+r_{3}\right) \theta\right) \\
& =\cos (N t) \sin (t y)+\sin \left(N^{*}\right) \cos \left(\frac{y}{y}\right.
\end{aligned}
$$

- Write

$$
\sin \left(\left(N+\frac{1}{2}\right) t\right)=\cos (N t) \sin \left(\frac{t}{2}\right)+\sin (N t) \cos \left(\frac{t}{2}\right)
$$

- The formula for $s_{N}(f, x)=f(x)$ is a sum of two terms:

$$
\begin{aligned}
& \int() \sin A t=N^{1} 2 h \operatorname{sen} \\
& \uparrow \begin{array}{c}
\text { Fome afl } \\
\text { of }
\end{array} \\
& a_{0}+\sum a_{n} \cos n t+\sum b_{n} \operatorname{sen} n t \\
& \text { Bessel's inea } \\
& \Rightarrow \quad \underset{\substack{a_{n} \rightarrow 0 \\
b_{n} \rightarrow 0}}{a_{0}^{2} \sum \varepsilon_{2}^{2}+\sum h_{2}^{2}}<\infty^{\left.\frac{1}{2}+\sum_{-\pi}^{\pi} f(x)\right)^{2} a_{0}}
\end{aligned}
$$

- The first is the $N^{t h}$ Fourier sine coefficient of

$$
\frac{f(x-t)-f(x)}{\sin \left(\frac{t}{2}\right)} \cos \left(\frac{t}{2}\right)
$$

which is Riemann integrable by the assumption $|f(x-t)-f(x)| \leq M|t|$ using $\sin (t) \sim t$

- The second is the $N^{\text {th }}$ Fourier cosine coeff of a Riemann integrable function.
- By Bessel's inequality these $\rightarrow 0$ as $N \rightarrow \infty$.

Fejer＇s Theorem

－Cesaro sums：given $\left\{s_{n}\right\}$ ，define

$$
\sigma_{N}=\frac{S_{0}+\boldsymbol{S}_{1}+\cdots+S_{N}}{N+1}
$$

－$\left\{\boldsymbol{s}_{n}\right\}$ is Cesaro summable if $\left\{\sigma_{n}\right\}$ converges
－$\left\{s_{n}\right\}$ convergent \Rightarrow Cesaro summable
－Not conversely．

$$
\begin{aligned}
& \forall \varepsilon 70 \quad 7 v\left|\sum_{n}-8\right|<2 \quad \text { of } n>M \\
& \text { ふが }
\end{aligned}
$$

$$
\begin{aligned}
& f \text { continuous } \Rightarrow \sigma_{N}(f: x) \rightarrow f \text { uniformly. } \\
& \frac{\frac{1,0,1,0,1,0}{1,1,2,2,5,5,4,4 y \cdots}}{215}-71 / 2
\end{aligned}
$$

Reason $S_{N}(f, x)=\left\{f(x, t) D_{N} L \in s\right.$

$$
\begin{aligned}
& \sigma_{N}=\frac{S_{0}+s_{1} \cdots s_{N}}{N+1}=\frac{1}{2_{1 \pi}} \int f\left(x_{n-i}\right)\left(\frac{\left.D_{0}+T_{1}+\cdots D_{i}\right)_{C / k}}{N}\right. \\
& D_{m}(t)=\frac{\sin (x+\pi)}{\operatorname{sen} \alpha / 2} \\
& D_{0}+D_{1}+D_{2}- \\
& =\frac{\operatorname{sen}(1 \pi t) h^{2}+\operatorname{sen}(\xi \varepsilon t)+\sin (\sin t) \ldots}{(\operatorname{sen} t / 2)^{2}} \\
& \frac{D_{0}-D_{k=}}{N+1}=\left(\frac{\sin \frac{N t}{2}}{\sin t \varepsilon}\right)^{2} \\
& \sin \left(x+\frac{1}{2}\right) t \\
& \text { sinter thy } \\
& \sum_{0}^{N-1} \sin (t) \sin (x+\pi) t=1-\cos N t
\end{aligned}
$$

 juest lene purs aphor

$$
\text { Some } \int_{-\delta}^{\delta} \sim 1,
$$

$$
\begin{aligned}
\frac{\sum_{n=1}^{\infty} 1 / x^{2}}{} & =\pi^{2} / 6 \\
1 x^{4} & =\pi^{4}() \\
1 / 2 & \pi^{6}
\end{aligned}
$$

f paock a M, Riverent

$$
\frac{f \leadsto \sum c_{n} e^{i_{n y}}}{\sum\left(\left.c_{n}\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x\right.}
$$

Gamma Function

- Definition: For $x>0$

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

- Note: for $0<x<1$ have to check both 0 and ∞.
- Integration by parts:

$$
\begin{aligned}
& \Gamma(x+1)=x \Gamma(x) \\
& \Gamma(1)=\int_{0}^{\infty} e^{-t} a t=-e^{-t} 0_{0}^{0}=1 \\
& \Gamma(2)=\Gamma c_{1} 1=1
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma(3)=2 \Gamma(2)=2 \\
& \Gamma(4)=3 \Gamma(s)=312 \\
& \vdots \\
& \Gamma(x+1)=x! \\
& \text { extensen of } x!\text { to } \mathbb{R}_{s}^{+}
\end{aligned}
$$

$$
\int_{6}^{\infty} t^{x-1} e^{-t} d r
$$

ocx <1 Conveseo innut int

$$
\text { at } 0
$$

$$
\mu(x) \quad \Gamma(x) \quad z \in \mathbb{C}
$$

© - \{nequac cineon\}

sin

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} e^{-s^{2}} \cdot d d s= \\
& \left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2} \\
& =\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x} e^{-y} d x d y
\end{aligned}
$$

\qquad

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+g x\right)} d x d x
$$

chanie to polen $x^{2}+y^{2}=r^{2}$

$$
v_{1} r_{0} \rightarrow-r v
$$

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} e^{-r^{2}} \tag{B}
\end{equation*}
$$

$$
=\int_{S^{2}+1} \int_{0}^{\infty} e^{-r^{2}}-
$$

$$
\begin{aligned}
& S_{n-1}=\operatorname{vol}\left(S^{n-1}\right) \lessdot S^{n-1}=\left\{v \in \mathbb{R}^{3} ; \| v-11=1\right\} \\
& b_{n}=\operatorname{vol}\left(B^{n}\right) \cdot B^{n}=\left\{v \in \mathbb{R}^{n} ; \| v \leq 1\right\}
\end{aligned}
$$

vol aid $\operatorname{vol}(B)=\int_{0}^{1} \underbrace{\operatorname{vel}(11 \sim \pi-r)}_{n_{-}} \cdot d r$

$$
\begin{aligned}
& d_{r d y}=r d r d o \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta \\
& =\left.\quad \frac{e^{-r^{2}}}{x}\right|_{0} ^{\infty}=\frac{1}{2} \\
& 0-(-1 / 2)=1 / 2 \\
& \int_{0}^{2 \pi} 1 \varepsilon d t=\pi \\
& \left(\int_{-\infty}^{\infty} e^{-s^{2}} d s\right)^{n}=\pi \\
& \int_{-\infty}^{\infty} e^{-s^{2}} d s=\sqrt{\pi} \\
& \left(\int_{-\infty}^{\infty} e^{-x^{2}} r\right)^{x}=(\sqrt{\pi})^{x}=\pi^{x / 2} \\
& \int_{-\infty}^{\infty}-\int_{-\infty}^{1} e^{-x_{1}^{2}} e^{-x^{2}}-d x-\alpha \\
& =\int_{\mathbb{R}^{n}} e^{-\left(x_{1}^{2}++x_{2}^{2}\right)} d e_{1} \ldots m_{2} \\
& R^{x}: S^{x-1} \times \mathbb{R}^{+} \\
& \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

Compule S_{n-1} explic.ity, $\Gamma \rightarrow \pi, n!$
$b_{x} \rightarrow+$

Zeta Function

$$
\begin{aligned}
& \zeta(s)=\sum_{n=1}^{\infty} 1 / x^{s} \quad \text { aness } s>1 \\
& \begin{array}{l}
\rho(2), \rho(4), \\
\pi r_{6}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1-1 / s}=1+1 / p s+1 / p s c \cdot \cdots \\
& \prod_{p}\left(\underline{c}+反_{p s}+\cdots\right)=\cdots
\end{aligned}
$$

