Foundations of Analysis II Week 3

Domingo Toledo

University of Utah
Spring 2019

$$
e^{i x}=\cos \pi \theta i \sin x
$$

Recall Stone's Theorem
Does not As soma of
hor alg \Rightarrow these can ko
$w^{e^{l l l s e e}}$ Theorem
amino
Let K be compact and let $\mathcal{F} \subset \mathcal{C}(K, \mathbb{R})$ satisfy:

- For all $x, y \in K$ with $x \neq y$ and for all $c_{1}, c_{2} \in \mathbb{R}$ there exists $f \in \mathcal{F}$ such that $f(x)=c_{1}$ and $f(y)=c_{2}$.
- If $f, g \in \mathcal{F}$, then $\max \{f, g\}$ and $\min \{f, g\}$ are also in \mathcal{F}.
uniform
- Then \mathcal{F} is uniformly dense in $\mathcal{C}(K, \mathbb{R})$ (that is, \mathcal{F} is $c c^{c o s 0^{\circ}} f$ dense in $\mathcal{C}(\bar{K}, \mathbb{R})$ in the ∞-norm)

$$
\begin{aligned}
& \text { of } \\
& \text { is } \\
& e(k, 1 \mathbb{R})
\end{aligned}
$$

These 2 props seto.s.ed
dense in $l l \cdots l_{0}$

$$
E(k, \mathbb{R})
$$

$\Leftrightarrow \forall \delta \in C(k, R)<\forall \varepsilon r 0 \quad \exists g \in \mathscr{f}$

$$
\text { s.f. }|f(x)-g(x)|<\varepsilon \forall x \in K
$$

Proof of Stone's theorem

- Let $f \in \mathcal{C}(K, \mathbb{R})$ and let $\epsilon>0$ be given.
- For all $x \in K$, there exists $g_{x} \in \mathcal{F}$ such that $g_{x}(x)=f(x)$ and $g_{x}(z)>f(x)-\epsilon$ for all $z \in K$.

ع>。

$$
\begin{aligned}
& \exists g_{x y} \in f \\
& \text { ss } g_{x y}(x)=f(x) \\
& g_{x y}(y)=f(y)
\end{aligned}
$$

(4)

$$
\begin{aligned}
& x \\
& g_{r y} \text { cont } \Rightarrow \exists m \operatorname{los} \text { of y } \text { st. } \\
& g_{r y}(z) \geq f(z)-\varepsilon \quad \forall \geq c V_{y}
\end{aligned}
$$

(3) K anat \Rightarrow covered by fin ton $V_{y, F}, V_{y m}$

$$
\begin{aligned}
& \operatorname{let} g_{x}=\max \{\underbrace{}_{x, g_{1}, \ldots, g_{\lambda,}, g_{n}}\}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \log _{x}(z) \rightarrow f(z)-\varepsilon \quad \forall z \in \mathbb{K} .
\end{aligned}
$$

- There exist $x_{1}, \ldots, x_{\text {梠 }} \in K$ and an open cover $\left\{V_{1}, \ldots, V_{m}\right\}$ of K such that $x_{i} \in V_{i}$ and $g_{x_{i}}(z)<f(z)+\epsilon$ for all $z \in V_{i}$.

$$
\begin{gathered}
g_{x_{c}}\left(x_{c}\right)=f\left(x_{i}\right) \& c \text { ow } \Rightarrow J o n v V_{x_{c}} \text { of } f_{c} \\
g_{x_{c}}(z)<f(z)+\varepsilon \quad \forall z \in V_{\psi_{s}}
\end{gathered}
$$

$$
\Rightarrow \text { suon }
$$

- Let $(g)=\min \left\{g_{x_{1}}, \ldots, g_{x_{m}}\right\}$ Then $g \in \mathcal{F}$ and $|f(z)-g(z)|<\epsilon$ for all $z \in K$.

$$
f(z)-\varepsilon<g(y)<f(z)+\varepsilon \quad \forall z \in K
$$

\rightarrow renel shere
Lebesen

Stone'-Weierstrass Theorem

Theorem

- K compact space and $\mathcal{A}=$ sub-algebra of $\mathcal{C}(K, \mathbb{R})$.
- Suppose \mathcal{A} separates points and vanishes at no point.
- Then the uniform closure of \mathcal{A} is all of $\mathbb{C}(K, \mathbb{R})$

\mathcal{A} separates points means: for all $x, y \in K, x \neq y$, there exists $f \in \mathcal{A}$ with $f(x) \neq f(y)$.
- \mathcal{A} vanishes at no point of K means: for all $x \in K$ there exists $f \in \mathcal{A}$ with $f(x) \neq 0$.

Proof of Stone-Weierstrass

$$
\left(\begin{array}{l}
f \subset \mathcal{Q} \Rightarrow|f| \subset B \Rightarrow{ }_{\mathcal{L}} B \Rightarrow|f| \subset \mathcal{B} \\
\text { Let } \mathcal{B}=\text { uniform closure of } \mathcal{A} . \\
f \in \mathcal{B} \Rightarrow|f| \in \mathcal{B}
\end{array}\right.
$$

Observer: If $P($ (t) is a real harm

$$
\begin{aligned}
p \subset \delta=a_{0}+a_{1} t+c_{2} t^{2}- & -a_{n} t^{2} \\
\text { and } f \in a \Rightarrow & p(f) \in a \\
& p(f)(x)=p(f(x))
\end{aligned}
$$

$$
\begin{gathered}
f \in a, \text { want }|f| \in B_{\text {, the }} \operatorname{ain}(x) \sigma \\
\exists c>0 s+(f(x)] \leq c \quad \text { take } p_{n} \&[-c-1, c+1]
\end{gathered}
$$

$$
\begin{aligned}
& P_{n}(f) \in a<P_{n}(f) \rightarrow|f| \text { ents on } k \text {. } \\
& \text { - } f, g \in \mathcal{B} \Rightarrow \max \{f, g\}, \min \{f, g\} \in \mathcal{B} \\
& C_{f-9} \subset B \Rightarrow|f-g| \subset P_{1}= \\
& m_{\mathrm{o}}=\frac{1}{2}((f+g)+(f f-9 \mid)) \\
& m=\frac{1}{2}\left((f+g)-1 f a^{2}\right)
\end{aligned}
$$

- Apply Stone's theorem to \mathcal{B}.
B is dure in $\operatorname{Co}\left(K, R_{0}\right)$
h B -.closed ...

$$
B=G(K, \mathbb{R})
$$

Stone-Weierstrass for Complex Functions

Definition sctint G
A © -algebra \mathcal{A} of complex functions on a set E is called self-adjoint if and only if it is closed under complex conjugation: $f \in \mathcal{A} \Rightarrow \bar{f} \in \mathcal{A}$.

Theorem

- K compact space and $\mathcal{A}=$ self-adjoint sub-algebra of $\mathcal{C}(K, \mathbb{C})$.
- Suppose \mathcal{A} separates points and vanishes at no point.
- Then the uniform closure of \mathcal{A} is all of (K, \mathbb{C})

Proof

- Let $\mathcal{A}_{\mathbb{R}}$ be the collection of real functions in \mathcal{A}.
- If $f=u+i v \in \mathcal{A}, u, v$ real functions on K, then

$$
u=\frac{(f)+(\bar{f})}{2} \text { and } v=\frac{f-\bar{f}}{2 i} \text { are both } \in \mathcal{A}_{\mathbb{R}}
$$

- Thus $\mathcal{A}=\left\{u+i v: u, v \in \mathcal{A}_{\mathbb{R}}\right\}$
- Apply Stone-Weierstrass to \mathcal{A}_{R}

Applications

- Weierstrass theorem: Let $\mathcal{P} \subset \mathcal{C}([a, b])$ be the sub-algebra of polynomials. The the uniform closure of \mathcal{P} is $\mathcal{C}([a, b])$.

$$
\begin{equation*}
a_{0}+a_{2} t^{2}+a_{y} t^{4}-- \tag{0,1}
\end{equation*}
$$

－Let $\mathcal{P}^{e v}$ be the subalgebra of \mathcal{P} consisting of polynomials with all monomial terms of even degree． Then the uniform closure of $\mathcal{P}^{e v}$ in $\mathcal{C}([0,1])$ is all of $\mathcal{C}([0,1])$ ．

ミつQの

- What is the uniform closure of $\mathcal{P}^{e v}$ in $\mathcal{C}([-1,1])$?

- Which hypothesis of Stone-Weierstrass fails?

$$
\text { Chapi } \frac{\text { powersens }}{\frac{e^{y} \text {, eny inuer ins }}{\text { from }} \text { itt }}
$$

$$
\begin{aligned}
& e^{i \theta t}=\hat{c}\left(c^{\prime} \theta\right)+\left(\frac{\left(\left.c^{*} \theta\right|^{2}\right.}{2!}\right)
\end{aligned}
$$

Trigonometric Polynomials and Fourier/Series

- Let $S^{1}=$

- The unit circle $|z|=1$ in \mathbb{C}
- $\Leftrightarrow\left\{e^{i \theta}: \theta \in \mathbb{R} / 2 \pi \mathbb{Z}\right\}$
- $\Leftrightarrow \mathbb{R} / 2 \pi \mathbb{Z}$

A compact space.
e egotise ring,$\rightarrow C_{2 \pi} \vec{\theta}+4$

- $\mathcal{C}\left(S^{1}\right)$ is the algebra of continuous functions on $\mathbb{R}^{\theta}{ }^{\theta}-6 \pi$ which are periodic of period 2π
- Let $[a, b] \subset \mathbb{R}$ be any interval of lenth 2π (for example, $[0,2 \pi]$ or $[-\pi, \pi])$. Then $\mathcal{C}\left(S^{1}\right)$ is the subalgebra of $\mathcal{C}([a, b])$ of all f with $f(a)=f(b)$.

$$
\begin{aligned}
& \mathbb{R} / 2 \pi z=\text { eye ah } x \sim y \\
& z x a t \text { st, } x y=u \pi x \Leftrightarrow x-y \in 2 \pi \mathbb{B}
\end{aligned}
$$

- Let $\mathcal{A} \subset \mathcal{C}\left(S^{1}, \mathbb{C}\right)$ be the subalgebra of functions

$$
f(\theta)=\sum_{n=-N}^{N} c_{n}^{N} e^{i n \theta} \quad \begin{aligned}
& \theta \in \mathbb{R} \\
& \text { for some } N
\end{aligned} c_{2} \in \mathbb{C}
$$

where the c_{n} are complex constants, $N=0,1,2, \ldots$

- The elements of \mathcal{A} are called trigonometric "polynomials"
nequfive powers

$$
e^{i x \epsilon}=\left(e^{i \theta}\right)^{x}
$$

$$
\left(\sum_{-N}^{N} c_{n} e^{i n \theta}\right)=\sum_{-M}^{m} \bar{c}_{n} e^{-i n \theta}
$$

A trigon poly of degree N

$$
\begin{aligned}
& f(\theta)=\sum_{n=-N}^{N} c_{n} e^{i n \theta} \\
& N=0 \quad c_{0} \\
& N=1 \quad c_{-1} e^{-i \theta}+c_{0}+c_{1} e^{i \theta \theta} \\
& M=1 \quad c_{-2} e^{-2 c \sigma}+c_{-1} e^{-i \sigma}+c_{6}+c_{1} e^{i \theta}+L_{2} e^{i c \theta}
\end{aligned}
$$

$e^{i \theta}$ eager
the ea, mot

$$
\begin{aligned}
& \text { symmetry } \\
& -N \quad \frac{1}{\sigma}-N
\end{aligned}
$$

closed under complex conj;

$$
\begin{aligned}
& \text { (self-adj't } 1^{G} \text { algebra of } \mathbb{C} \text {-Gur } \\
& \text { on } e(k, C \in)
\end{aligned}
$$

$\left(e^{i \theta}\right)^{2}=e^{2 i \theta}$

- Check that $\mathcal{A} \subset \mathcal{C}\left(S^{1}, \mathbb{C}\right)$ is a self-adjoint algebra that separates points and does not vanish at any point.
- Stone-Weierstrass \Rightarrow the uniform closure of \mathcal{A} is $\mathcal{C}\left(S^{1}, \mathbb{C}\right)$
- Any continuous \mathbb{C}-valued periodic function on \mathbb{R} with period 2π can be uniformly approximated by trigonometric polynomials.

$$
\begin{aligned}
& \left(\sum_{-N}^{N} c_{n} e^{i n \theta}\right)\left(\sum_{-N}^{M} a_{l} e^{i\left(l^{\theta}\right)}\right. \\
& \sum_{n} \sum_{\substack{N \leq n \leq N \\
-M \leq l \leq m}} c_{n} a_{l} e^{i(n+l) \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{-N}^{N} c_{n} e^{i n g} \quad e^{i n \theta}=\cos \operatorname{se\theta } \theta \\
&+i \sin \theta
\end{aligned}
$$

Real Trigonometric Polynomials
co $\operatorname{tingnoly} \sum_{P(x)}^{N} \sum_{n=-N}^{N} e_{n} e^{i n \theta}$

$$
\begin{aligned}
& \quad \overline{P(x)}=\sum_{-N}^{N} \overline{c_{n} e^{i n \theta}} \\
& \overline{e^{i x}} \quad x \in \mathbb{R} \\
& \frac{e^{-i x}}{\beta_{1} e^{i x}-c_{i} x+c \sin x}
\end{aligned} \quad=\sum_{-N}^{N} \overline{c_{n}} e^{-i x \theta}
$$

$$
\begin{aligned}
\overline{e^{c}}=\cos x & -i \sin x=\cos (-x)+i \sin (-x) \\
& =e^{i(-x)}=e^{-i x}
\end{aligned}
$$

Founier, Solvikg

$$
P D E^{\prime} S
$$

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} c_{n} e^{i n \theta} \\
& \frac{d}{d \theta}\left(\sum_{-\infty}^{\infty} c_{n} e^{i n \theta}\right) \\
& \text { thope" iv, " } \sum_{-\infty}^{\infty} \frac{d}{d \theta}\left(c_{x} e^{\operatorname{in} \theta}\right) \\
& =\sum_{-\infty}^{\infty} i n c_{n} e^{i n t} \\
& \frac{d}{d \theta} \quad i^{i n} \\
& f(\theta) \rightarrow \frac{d f}{d \theta} \longleftrightarrow\left\{c_{n}\right\}_{n=-\infty}^{\infty} \rightarrow\left\{i c_{n}\right\}
\end{aligned}
$$

Simple soffeccent condi

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty}\left|c_{n}\right|<\infty \sum_{n=-\infty}^{\infty} c_{n} e^{i n e s} \\
& \text { conversios. }
\end{aligned}
$$

$\left\{C_{n}\right\}$

Def $\ell^{p}=\left\{\left\{c_{n}\right\}_{-\infty}^{\infty}: \bar{z}\left(c_{n}\right)^{p}<\infty\right\}$ jost proved:

$G\left(S^{\prime}\right)=\{f \in G(R):$

$$
f(x+2 \pi)=f(x)
$$

$$
\forall x \quad\}
$$

$=\frac{d f}{d \sigma} \operatorname{ent}$

$$
\begin{aligned}
& \left\{\mathbb{C}_{n}\right\} \in \ell^{\prime} \longrightarrow \sum c_{n} e^{i \cdot 2 \sigma} \text { eint } \\
& \sum\left|c_{n}\right|<\infty \\
& \frac{\operatorname{lon} R}{d \cdot f^{2} ?}
\end{aligned}
$$

Fourier Series

$$
\begin{aligned}
& \left(e^{i m \sigma} \mid e^{i n g} \int_{f_{0}}^{2 \pi} e^{i m \theta} e^{-i n t} d \sigma\right. \\
& =\int_{0}^{2 \pi} e^{c(m-x) \sigma} d G \\
& =\left\{\begin{array}{l}
\frac{e^{i(m-x) a}}{m-x} \quad \int_{0}^{2 k} m+x \\
\int_{0}^{2 \pi}(d \theta \\
m \in c
\end{array}\right. \\
& Q x, \vec{y}\rangle=\sum\left|\psi_{1}\right|^{2} \quad \gamma x \subset \mathbb{R}
\end{aligned}
$$

$$
\int_{0}^{i \pi} e^{i m \theta} e^{-i n t} d \theta=\frac{0 \sin m+d_{n}}{2 \pi i t m=x}
$$

$$
\left\{\frac{e^{i m \sigma}}{\sqrt{2 \pi}}\right\} \underset{\substack{\text { orthe-normd }}}{ }
$$

$$
\begin{aligned}
& =\left\{\begin{array}{lll}
0 & 0 & 4 \\
0
\end{array}\right.
\end{aligned}
$$

ON Systems
inner product space
(\&)

- $[a, b]$ an interval, L^{2} inner product

$$
((f, g))=\int_{a}^{b} f(x) \overline{g(x)} d x
$$

- Makes sense on complex functions satisfying

$$
\int_{a}^{b}|f(x)|^{2} d x<\infty
$$

Called square-integrable functions, or functions of class L2

$$
\text { at } \begin{aligned}
& f(x)=1_{x} \text { on }[0,1] \text { mot in } L^{2} \\
& \text { but } \sec ^{-\alpha} \text { oc } \alpha<1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\int_{d}^{1}\left(x^{-\alpha)^{2}} d x<\infty\right. \\
x^{-1 /}
\end{array} \int^{-2 \alpha}=\frac{5 x-2 \alpha+1}{-2 \alpha+4}-1 \quad-2 \alpha+1>0\right.
\end{aligned}
$$

- Reason: Schwarz inequality

$$
\left.\int_{a}^{b} f(x) \overline{g(x)} d x\right|^{2} \leq\left(\int_{a}^{b}|f(x)|^{2} d x\right)\left(\int_{a}^{b}|g(x)|^{2} d x\right)
$$

- Call this space $L^{2}[a, b]$.
- It is a complex inner product space, just as \mathbb{C}^{n}.
- Think first of \mathbb{R}^{n}, length, angles, etc.
- If $\left\{\phi_{n}\right\}$ is an ON system in $L^{2}[a, b]$, and

$$
t=\sum_{-\infty}^{\infty} c_{n} \phi_{n} \text { fin or } \infty
$$

recover the c_{n} from f by

$$
c_{n}=\int_{a}^{b} f(x) \overline{\phi_{n}(x)} d x \quad \frac{e^{i n t}}{\sqrt{2 k}}
$$

- c_{n} called the Fourier coefficients of f.
- Write

$$
f \sim \sum c_{n} \phi_{n}
$$

$$
\varphi_{n}(v) e^{\sin v}
$$

$$
\begin{aligned}
& \int\left(\sum_{x=1}^{N} \operatorname{E}_{x} \varphi_{x}\right) \overline{\varphi_{m}^{(x)}} d x \quad \begin{array}{l}
\quad m \ln x \\
x=1,-N
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum c_{n} S_{n,-1}=c_{2} \\
& f=\overparen{\left\langle\varphi_{1}, \ldots, \varphi_{N}\right\rangle=\text { shanot } \varphi_{1} \ldots \varphi_{2} \quad L^{2}} \\
& \left(f, \varphi_{c}\right) \quad f=\sum c_{n} \varphi_{n} \\
& \left.c_{n}=\rho_{f}, \varphi_{n}\right) \text {. }
\end{aligned}
$$

$$
f,\left\langle\varphi_{n}\right\}_{n=1}^{\infty}
$$

- To study convergence, first finite sums

$$
s_{N}=s_{N}(f, x)=\sum_{1}^{N} c_{n} \phi_{n}(x)
$$

- Minimum property:
s_{N} is the vector in span of $\phi_{1}, \ldots, \phi_{n}$ closest to f
- Same: s_{N} is the orthogonal projection of f on the span of $\phi_{1}, \ldots \phi_{n}$

:Droj of

$$
\text { on }\left\langle\left\langle q_{1}, \cdots, \varphi_{1}\right\rangle\right.
$$

$$
\begin{aligned}
& f \in L^{n}[a, b] \longrightarrow \frac{\left\{c_{n}\right\}}{\overline{(\hat{}}(n)} \\
& \boldsymbol{f}_{\hat{f}(x)\}_{2=0}^{\infty}} \\
& \left.f \in L^{n}(a, b) \Rightarrow\right|^{2}\{n \mid) \subset l^{n}
\end{aligned}
$$

For usual Fourier series

$$
\underset{i \text { isometry }}{L^{2}[a, s]} \approx e^{2}
$$

$$
f_{n} \text { in }{ }^{\prime} C(C(0,1)
$$

earch in 11 -- ll,

$$
\begin{aligned}
1\|f\|_{2} & =0 \\
& a f=0
\end{aligned}
$$

