Foundations of Analysis II

Week 12

Domingo Toledo

University of Utah

Spring 2019

$$
I \quad \& J
$$

quander it E onluen
Let

$$
\int_{I}\left((f \cdot s) L g^{\prime}| | d s=\int_{t} f(q d t)\right.
$$

Leihnar

$$
\text { Otanefral } \rightarrow \text { E,s... }
$$

Gm

Interrch

$$
\cos ^{n}\left(\underset{y}{k}\left(\mathbb{R}^{x}\right)\right.
$$

$\frac{\text { On ham K-dem "manifold }{ }^{k}}{\int \underset{\Phi}{R} \mathbb{R}^{b}} \mathbb{R}^{n}$
C, $d \Phi$ medare $k x a R$
的整

$$
\int_{\Phi} w^{M H} \int_{R} \Phi^{*} W^{\prime}
$$

$$
\int_{R^{\prime}} F^{*} \alpha=\int_{R^{\alpha}}
$$

$$
\alpha=\phi(t) d t_{1} \cdots<d t_{k}
$$

$$
\int_{\mathbb{R}^{\prime}} \varphi(F(\lambda))\left(\operatorname{det}\left(d_{s} F\right) \mid \underline{d s_{1}-d s_{2}}=\int_{R} \varphi(\epsilon) d t_{1}-d e_{0}\right)
$$

\uparrow Real Thn \&
Ruden proves for Pi with constac sepher

$$
\begin{aligned}
& \int_{R} \varphi d t_{1}-d n=\text { carchd indrat. } \\
&\left(\left(\int_{a_{1}}^{b} \varphi\left(x_{1},-1\right) d a_{a}\right) d y\right), \ldots
\end{aligned}
$$

Gone?

$$
\int_{2}^{n}\left(\int_{6}^{3} f\left(x_{1}, d d x\right) d y=\int_{a}^{d}\left(\cdot\left(\int_{\varepsilon}^{p} f\left(x_{s}, d x a y\right)\right] d x\right.\right.
$$

$$
f(x ; y)=k(x \cdot h(g) \quad \text { ahan }
$$

$$
=\left(\int_{a}^{S} \int c_{r i d y}\right)\left(\int_{c}^{d} d G G_{a}\left(a_{1}\right)\right.
$$

GC for $g(x) h C_{g}$
\Rightarrow OKforsans t tinder.
Stone Wer \rightarrow ah qen h buders dime on $C\left([a, s), k_{0}, b\right)$
$\Rightarrow O K \quad \forall$ cont.

$$
\begin{aligned}
& \text { Back } \int_{T} \text { dranden } \\
& \text { drady ou } M^{a}=\text { pell-culd dendi ine } R^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pa, }(x, y, x)=(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{R_{1}} \Phi^{2} \text { dana, }=\frac{ \pm}{\left(\pi_{n} T_{1}\right)} \\
& \text { Orrencul }{ }^{61} \text { Choose alacs } e_{1}, \text { Jeen \& } \mathbb{R}^{k}
\end{aligned}
$$

desings arour.

- She edaen ofoll hes has two Connectuo

$E=A E^{r} \quad A=$ ins kiknots
Susa. $\quad \operatorname{det}(A) \geq 0 \leftarrow e$ esel sameas
Chobre a compant, $\operatorname{det}(A)<0-e \in e r$ ohruas call it posinn

Rodines pf of chama of rors

1) if chay $F \quad F\left(x_{1}, \ldots, x_{n}\right)=\mid x_{1}, \ldots x_{n-1} \alpha\left(x_{1, \ldots}, n, n\right.$

$$
\begin{aligned}
& \left(r_{1}, \ldots, x_{m-1}, \frac{\left.\alpha\left(x_{1}, \ldots, r_{2}\right), x_{2 \ldots-} r_{2}\right)}{\cdots}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { OK } \int P\left(F(x) x(x) \ldots f \int_{a} \varphi(x, \ldots, \alpha x, \ldots) \frac{\partial \alpha}{\partial x_{n}} d x-d x\right. \\
& { }^{2} \text { nn } 1-2 \\
& \varphi(F(k) / \operatorname{lot} d E)
\end{aligned}
$$

$$
\begin{aligned}
& \text { a cirseca's. } \\
& F_{11} F_{2} \rightarrow F_{1} F_{2}
\end{aligned}
$$

$$
F\left(x_{1}, x_{2}\right)=\left(f_{1} C x_{1}, x_{1}, t_{2}\left(x_{2}, \frac{1}{}\right)\right.
$$

$d) \sim 0, d E$ Esarclea one mak Fo $_{0}$

Schwarz Example

- H.A. Schwarz Example of a polyhedral surface approximating a torus uniformly, but far from smoothly,

Details

Observe

- The triangles have their vertices on the cylinder.
- The triangles are nearly horizontal
- Same: the triangles are nearly perpendicular to the cylinder
- The triangles are very thin: Their area much smaller than the square of their diameter.

Schwarz Inequality and Norm on $\Lambda^{2}\left(\mathbb{R}^{n}\right)$

$$
\begin{aligned}
& \left.(u \cdot v)^{2} \leq p o u\right)(v . v) \\
& \text { ing }(x, u)(v, v)-(v,)^{2} \\
& \left(u_{1} u_{2}-2 u_{1} k\left(v_{1}^{2}+-+v_{2}^{2}\right)-\left(u_{1} v_{1}+-t u_{2} v\right)^{2}\right. \\
& = \\
& \text { 为 } \\
& \text { lin } \quad \sum \left\lvert\, \begin{array}{c}
u_{1} \cdot u_{f} \\
v_{i} v_{i}
\end{array}\left\|^{2}=\right\| u \wedge v\right. \|^{2} \\
& \varepsilon \Leftrightarrow u \imath v=0 \Leftrightarrow u_{1} v \ln d n
\end{aligned}
$$

Change of variables formula

- Suppose E, D domains in $\mathbb{R}^{k}, \Phi: E \rightarrow D$ bijective, $d_{s} \Phi$ invertible for all $s \in E .(t=\Phi(s))$
- Then for all continuous functions $f: D \rightarrow \mathbb{R}$

$$
\int_{E} f(\Phi(s))\left|\operatorname{det}\left(d_{s} \Phi\right)\right| d s_{1} \ldots, d s_{k}=\int_{D} f(t) d t_{1} \ldots d t_{k}
$$

- Note how the absolute vane | $\operatorname{det}(d \Phi) \mid$ appears, rathen than $\operatorname{det}(d \Phi)$. Results from orientation.

$$
\text { prove for } k=2
$$

for flowing
Rudia'y
proof

Integration in \mathbb{R}^{2}

- $R=[a, b] \times[c, d]$ a rectangle in \mathbb{R}^{2}.

Radices

- $f: R \rightarrow \mathbb{R}$ continuous function
- Then $\int_{R} f(x, y) d x d y$ can be defined
- By limit of Riemann sums.
- As an iterated integral

$$
\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

- This equality holds for $f \in \mathcal{C}(R)$. It's needed for the definition to make sense.
- Rudin proves this quickly from special case $f(x, y)=g(x) h(y)$ and Stone-Weierstrass theorem
- Will take the iterated integral definition.
- Recall the support of f is

$$
\operatorname{supp}(f)=\overline{\{x: f(x) \neq 0\}}
$$

- Let $\mathcal{C}_{c}\left(\mathbb{R}^{2}\right) \subset \mathcal{C}\left(\mathbb{R}^{2}\right)$ denote the space of continuous functions with compact support
- If $f \in \mathcal{C}_{c}\left(\mathbb{R}^{2}\right)$ can define

$$
\int_{\mathbb{R}^{2}} f d x d y \text { to be } \int_{R} f d x d y
$$

where R is any rectangle containing $\operatorname{supp}(f)$ in its interior.

- Easily seen independent of R.
- Let $D \subset \mathbb{R}^{2}$ be a "domain of integration"
- A compact set with non-empty interior, boundary a finite union of \mathcal{C}^{1} curves
- Examples:
- Rectangle $[a, b] \times[c, d]$
- Disk $x^{2}+y^{2} \leq r^{2}$
- Triangle $0 \leq x \leq y \leq 1$
- $x^{2}+y^{2} \leq 4,|x| \leq 1$
- If $\operatorname{supp}(f) \subset D^{0}$ (interior of D) and R is a rectangle containing D, define

$$
\int_{D} f d x d y=\int_{R} f d x d y
$$

- Good definition for $f \in \mathcal{C}_{C}\left(D^{\circ}\right)$.

- Too restrictive: want $\int_{D} f d x d y$ for all $f \in \mathcal{C}(D)$. semry
- A sensible definition: $\tilde{f}=$ extension of f to R by 0 on $R \backslash D$

$$
\int_{D} f d x d y=\int_{R} \tilde{f} d x d y \quad \begin{aligned}
& \text { Ulue Es } \\
& \text { Lnton }
\end{aligned}
$$

Riemann integral of the discontinuous function \tilde{f} over R.

Change of variables formula in \mathbb{R}^{2}

- Suppose E, D domains in $\mathbb{R}^{2}, F: E \rightarrow D$ is of class \mathcal{C}^{1}, is bijective, and $d_{(u, v)} F$ invertible for all $(u, v) \in E$.
- (Thus $(x, y)=F(u, v)=(f(u, v), g(u, v))$ is a "change of variables")

- Then for all continuous functions $\phi: D \rightarrow \mathbb{R}$ (h)

$$
\left.\int_{E} \phi(F(u, v))\right) \operatorname{det}\left(d_{(u, v)} F\right) d u d v=\int_{D} \phi(x, y) d x d y
$$

- Note the absolute value $|\operatorname{det}(d F)|$ appears, rather than $\operatorname{det}(d F)$.
- Will only prove under the assumption $\phi \in \mathcal{C}_{c}\left(D^{0}\right)$
- Why is this difficult to prove?
- In one dimension, if $f:[c, d] \rightarrow[a, b]$ is strictly increasing, surjective, then

$$
\int_{(c)}^{(d)} \phi\left(\frac{f}{(x)}(u)\right) f^{\prime}(u) d u=\int_{a}^{b} \phi(x) d x
$$

is easily proved from Riemann sums

$$
\begin{aligned}
& \sum \phi\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right)=\sum \phi\left(\mathscr{G}\left(\hat{\xi}_{i}\right)\right) \mathfrak{g}^{\prime}\left(\eta_{i}\right)\left(\underline{u_{i}-u_{i-1}}\right) \\
& \text { for some } \hat{\xi}_{i}, \eta_{i} \in\left[u_{i-1}, u_{i}\right] \\
& \int_{-}^{\infty} \varphi(f(x)) f^{\prime}(x) d x \\
& \text { f尹 }
\end{aligned}
$$

$[(1) \xrightarrow{2,1}[0,1]) f(x)=x^{2} \int \varphi\left(x^{2}\right)$
$\int \varphi\left(x^{2}\right)|2 x| \frac{L}{d x} \int \varphi($ (a) $d y$

- This is easy because g takes intervals to intervals.
- But in \mathbb{R}^{2}, F does not take rectangles to rectangles.
- F takes rectangular grids to "curvilinear" grids.
- Same for F^{-1}.

- A direct proof will have to take this into account.
- Two special transformations where change of variable formula is easy
- "Primitive transformation"

$$
F(u, v)=(u, g(u, v)) \text { or } F(u, v)=(f(u, v), v)
$$

moves at most one variable at a time (same in \mathbb{R}^{k})

- "Flip" interchanges two coordinates

$$
F(u, v)=(v, u)
$$

Primitive Transformations

- Picture:
$F(u, v)=(u, g(u, v))$ maps each vertical line to itself.
$F(u, v)=(f(u, v), v)$ maps each horizontal line to itself.

$$
(u, v) \rightarrow(u, q(u, d)
$$

- Look at $(x, y)=F(u, v)=(u, g(u, v))$

$$
d F=\left(\begin{array}{cc}
1 & 0 \\
\frac{\partial g}{\partial u} & \frac{\partial g}{\partial v}
\end{array}\right)
$$

- Jacobian determinant $\left.\operatorname{det}(d \bar{F})=\frac{\partial g}{\partial v}\right) \neq 0$.

- F^{-1} is also primitive:

$$
F^{-1}(x, y)=(x, h(x, y))
$$

where, for each $x=u, h(x, y)$ is the inverse of $g(x, v)$

$$
\begin{aligned}
& g(x, h(x, y))=y \text { and } h(u, g(u, v))=v \\
& g_{a}(v) \quad \frac{1}{x}
\end{aligned}
$$

- If $E=[a, b] \times[c, d]$, then $D=F(E)$ is

$$
a \leq x \leq b, \quad g(x, c) \leq y \leq g(x, d)
$$

- If $F(E) \subset[a, b] \times\left[c^{\prime}, d^{\prime}\right]$ for some c^{\prime}, d^{\prime}.
- If $\operatorname{supp}(\phi) \subset D^{0}$, then

$$
\int_{[a, b] \times\left[c^{\prime}, d^{\prime}\right]} \phi(x, y) d x d y=\int_{a}^{b}\left(\int_{g(x, c)}^{g(x, d)} \phi(x, y) d y\right) d x
$$

- Finally, for each $u \in[a, b]$, the one-variable change of variables formula gives

$$
\int_{c}^{d} \phi(u, g(u, v))\left|\frac{\partial g}{\partial v}\right| d v=\int_{g(u, c)}^{g(u, d)} \phi(u, y) d y
$$

- Thus

$$
\int_{a}^{b}\left(\int_{c}^{d} \phi(u, g(u, v))\left|\operatorname{det}\left(d_{(u, v)} F\right)\right| d v\right) d u
$$

equals

$$
\int_{a}^{b}\left(\int_{c^{\prime}}^{d^{\prime}} \phi(x, y) d y\right) d x
$$

which is the change of variable formula for F.

- Same argument gives change of variable formula for

$$
F(u, v)=(f(u, v), v)
$$

- Change of variables formula holds for all primitive transformations.
- It also holds for flips. It is equivalent to

$$
\int_{a}^{b}\left(\int_{c}^{d} \phi(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} \phi(x, y) d x\right) d y
$$

The reduction to primitives and flips

- $F: E \rightarrow D, F(u, v)=(f(u, v), g(u, v))$ as above, $p \in E$.

$$
d_{p} F=\left(\begin{array}{ll}
\frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \\
\frac{\partial g}{\partial u} & \frac{\partial g}{\partial v}
\end{array}\right)
$$

- $d_{p} F$ invertible \Rightarrow at least one of $\frac{\partial f}{\partial u}, \frac{\partial g}{\partial u} \neq 0$
- Suppose $\frac{\partial f}{\partial u} \neq 0$.
- Let $G(u, v)=(f(u, v), v)$ (a primitive map)
- Then

$$
d G=\left(\begin{array}{cc}
\frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \\
0 & 1
\end{array}\right)
$$

- Inverse function theorem $\Rightarrow G$ invertible in a nbd of p, and

$$
G^{-1}(x, y)=(h(x, y), y)
$$

where $h(f(u, v), v)=u, f(h(x, y), y)=x$.

- Therefore

$$
F\left(G^{-1}(x, y)\right)=(f(h(x, y), y), g(h(x, y), y))=\left(x, g_{2}(x, y)\right)
$$

is a primitive map.

- Conclusion: Let $\tilde{F}=F \circ G^{-1}$.
- Then, restricted to a nbd of p,

$$
F=\tilde{F} \circ G
$$

is the composition of two primitive maps.

- Suppose $\frac{\partial f}{\partial u}=0$.
- Then $\frac{\partial g}{\partial u} \neq 0$.
- Let $G(u, v)=(g(u, v), v)$
- As before G is invertible in nbd of p and

$$
G^{-1}(x, y)=(h(x, y), y)
$$

where $g(h(x, y), y)=x$

- Let B be the flip. Then

$$
(B \circ F)(u, v)=(g(u, v), f(u, v))
$$

- Let $\tilde{F}=B \circ F \circ G^{-1}$.
- Then

$$
\tilde{F}(x, y)=(g(h(x, y), y), f(h(x, y, y)))=(x, \text { func }(x, y))
$$

is primitive.

- Rewrite the last equation

$$
F=B \circ \tilde{F} \circ G
$$

where B is a flip, \tilde{F} and G are primitive

- Put the two cases together:

$$
F=B \circ \tilde{F} \circ G
$$

where B is either the identity or a flip, \tilde{F} and G are primitive.

Main Theorem

Theorem

Let E, D be domains in \mathbb{R}^{2} and let $F: E \rightarrow D$ be \mathcal{C}^{1}, bijective, and $d_{p} F$ invertible for all $p \in E^{0}$. Then every $p \in E^{0}$ has a nbd U_{p} such that there exist maps B, F_{1}, G_{1} where

- $B=$ the identity or a flip.
- F_{1} and G_{1} are primitive.
- $F_{U_{p}}=B \circ F_{1} \circ G_{1}$

Change of Variables Theorem

Theorem

Let E, D be domains in \mathbb{R}^{2} and let $F: E \rightarrow D$ be \mathcal{C}^{1}, bijective, and $d_{p} F$ invertible for all $p \in E^{0}$. Let $\phi \in \mathcal{C}_{c}\left(D^{0}\right)$. Then

$$
\left.\int_{E} \phi(F(u, v))\right)\left|\operatorname{det}\left(d_{(u, v)} F\right)\right| d u d v=\int_{D} \phi(x, y) d x d y
$$

Proof

- Let $\left\{U_{p}\right\}_{p \in s u p p\left(F^{*} \phi\right)}$ be the open cover of $\operatorname{supp}\left(F^{*} \phi\right)$ by the open sets U_{p} of the Main Theorem.
- Let $\left\{U_{p_{i}}\right\}$ be a finite subcover
- There are functions $\phi_{i} \in \mathcal{C}_{c}\left(F\left(U_{p_{i}}\right)\right)$ such that $\phi=\sum \phi_{i}$. (Standard "partition of unity" argument.)
- Suffices to prove theorem for ϕ with $\operatorname{supp}\left(\phi_{i}\right) \subset F\left(U_{p_{i}}\right)$ for a single i.
- In $U_{p_{i}}$ can write F as a composition of flips and primmitive mappings.
- Since the change of variables formula for two maps implies the fomula for their composition, we're done.

Summary of Differential Forms

- $U \subset \mathbb{R}^{n}$ open, $0 \leq k \leq n$
- $A^{k}(U)=$ differential k-forms on U
- Each $\alpha \in A^{k}(U)$ has unique expression

$$
\alpha=\sum_{l} a_{l}(x) d x_{I}
$$

over all stricltly increasing multi-indeces of length k.

- $I=\left\{i_{1}, \ldots, i_{k}\right\}$ where $1 \leq i_{1}<\cdots<i_{k} \leq n$.
- $d x_{I}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$
- $a_{l}: U \rightarrow \mathbb{R}$ smooth functions.
- May write simply $A(U)$ for the collection of all k-forms for all k.
- Say $\operatorname{deg}(\alpha)=k \Longleftrightarrow \alpha \in A^{k}(U)$.
- Mulriplication $A^{k}(U) \times A^{\ell}(U) \rightarrow A^{k+\ell}(U)$ as defined in class.
- Multiplication $\alpha \wedge \beta$ satisfies

$$
\beta \wedge \alpha=(-1)^{\operatorname{deg}(\alpha) \operatorname{deg}(\beta)} \alpha \wedge \beta
$$

Operations on forms

$$
a(x) \text {, dh ec rem terns }
$$

- Since $A(U)$ is generated by $A^{0}(U)$ and the $d x_{1} \in A^{1}(U)$, operations with reasonable multiplicative properties are uniquely determined by their values on $A^{0}(U)$ and the $d x_{i}$
- Two main examples:
- Exterior derivative $d: A^{k}(U) \rightarrow A^{k+1}(U)$.
- Pullback $f^{*}: A^{k}(U) \rightarrow A^{k}(V)$ for a smooth map
$f: V \rightarrow U$

Exterior Derivative $d: A^{k}(U) \rightarrow A^{k+1}(U)$

- Uniquely determined by requiring:
- If $f \in A^{0}(U)$ a smooth function, then $d f$ is the usual derivative.

- Must have for each stricly increasing multi-index I

$$
\begin{aligned}
d\left(a_{1} d x_{1}\right) & =\left(d a_{1}\right) \wedge d x_{1} \\
d\left(a d x_{c_{1}} d r_{v_{2}}\right) & =d a)_{\wedge} \wedge d x_{v} \wedge b_{1} \wedge \rightarrow-\infty \sigma
\end{aligned}
$$

$$
\begin{aligned}
& d^{2}=0 \\
& d\left(a_{1} d x_{1}+a_{2} d_{2}\right) \\
& d\left(d_{\frac{\sigma}{t}}\right)=0 \\
& \text { tad did } x_{a}, \text { ony }
\end{aligned}
$$

$$
\begin{aligned}
& -d_{0}, \ldots a() \\
& =d a_{1} d y_{1}+d a_{2} d d(d f)=d\left(\sum_{1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}\right)=\sum_{1}^{n} d\left(\frac{\partial f}{\partial x_{i}}\right) \wedge d x_{i} \\
& \frac{\partial a_{1}}{\partial x_{2}} d x_{2} \text { adr1 } \\
& \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} d x_{j} \wedge d x_{i}
\end{aligned}
$$

$$
\begin{aligned}
& d\left(T Q_{i} \cdot d r\right)
\end{aligned}
$$

- In other words, the map

$$
d^{2}: A^{0}(U) \rightarrow A^{2}(U)
$$

is the zero map.

- It follows that for all k

$$
d^{2}: A^{k}(U) \rightarrow A^{k+2}(U)
$$

is always zero

- If $a d x_{1} \in A^{k}(U)$, then

$$
d\left(d\left(a d x_{i}\right)\right)=d\left(d a \wedge d x_{i}\right)=d^{2} a \wedge d x_{i}=0
$$

Pull-back

- If $V \subset \mathbb{R}^{m}$ open and $f: V \rightarrow U$ smooth, where $x=f(t)$, written explicitly is

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(t_{1}, \ldots, t_{m}\right), \ldots, f_{n}\left(t_{1}, \ldots t_{m}\right)\right),
$$

then

$$
f^{*}: A^{k}(U) \rightarrow A^{k}(V)
$$

is uniquely determined by

- $\left(f^{*} a\right)(t)=a(f(t))$ for all $a \in A^{0}(U)$
- $f^{*}\left(d x_{i}\right)=d f_{i}$
- $f^{*}(\alpha \wedge \beta)=f^{*} \alpha \wedge f^{*} \beta$ for all $\alpha \in A^{k}(U), \beta \in A^{\ell}(U)$
- Must have

$$
f^{*}\left(a d x_{l}\right)=\left(f^{*} a\right) d f_{i_{1}} \wedge \cdots \wedge d f_{i_{k}}
$$

- Finally two important identities:
- For all $\alpha \in A^{k}(U)$

$$
f^{*}(d \alpha)=d\left(f^{*} \alpha\right)
$$

briefly

$$
d f^{*}=f^{*} d
$$

- If $W \subset \mathbb{R}^{\ell}$ is open and $g: W \rightarrow V$ smooth,

$$
(f \circ g)^{*} \alpha=g^{*}\left(f^{*} \alpha\right)
$$

for all $\alpha \in A^{k}(U)$ briefly

$$
(f \circ g)^{*}=g^{*} \circ f^{*}
$$

Cubical Chains Rodin \& Simpliciel chang
(Spirak: Calculo, on Mfds: Cubicocl)

- Let $l^{k}=\left\{\left(t_{1}, \ldots t_{k}\right) \in \mathbb{R}^{k}: 0 \leq t_{i} \leq 1\right.$ be the standard cube.
- If $U \subset \mathbb{R}^{n}$ is open, a singular k - cube in U is a smooth map

$$
\sigma: I^{k} \rightarrow U
$$

- Let $Q_{k}(U)$ denote the set of all singular k-cubes in U.
- Let $S_{k}(U)$ be the \mathbb{R}-vector space with basis $Q^{k}(U)$
- Thus the elements of $S^{k}(U)$ are finite linear combinations

$$
\sum_{\sigma \in Q_{k}(U)} a_{\sigma} \sigma
$$

with $a_{\sigma} \in \mathbb{R}$ and $\mathbf{a}_{\sigma} \neq 0$ for only finitely many σ.
\square

$$
I^{2}
$$

woult ore fircd h-denculk
Standard cobe $I^{k}=[0,]^{k}$

$$
\begin{aligned}
& =[0,1] \\
& =\left\{\left(f_{1},-t_{n}\right)=\mathbb{R}^{h}\right.
\end{aligned}
$$

$$
\left.0 \leq f_{0} \leq 1\right\}
$$

$$
\frac{U c \cos n^{2}}{a \operatorname{con} \operatorname{sen}}
$$

siorgula ule in σ,

Chain: Belmant it seng wes widn orall

Huge Vector Spaeí
R-Vectursac with basis Q.

$$
\begin{aligned}
& \text { thage set } Q_{k}(U) \\
& -\{a l l \text { sen cals } \mathrm{ca} \text { } \sigma\} \\
& =\left\{\text { allmen } \sigma: I^{k \rightarrow} \rightarrow\right\}
\end{aligned}
$$

σ
$\Rightarrow \sum_{\sigma \in Q_{k}(U)} a_{\sigma} \sigma=\sum_{\sigma \in Q_{k}(U)} b_{\sigma} \sigma$
$a_{\sigma}=b_{\sigma}$ for all $\sigma \in Q_{k}(U)$

- $\bar{\sum} a_{\sigma} \bar{\sigma}+\sum b_{\sigma} \sigma=\sum\left(a_{\sigma}+b_{\sigma}\right) \sigma$
- $a\left(\sum \overline{\mathrm{a}}_{\sigma} \sigma\right)=\sum\left(a a_{\sigma}\right) \sigma$.
- The elements of $S_{k}(U)$ are called singular cubical chains in U.

- If $\sigma: I^{k} \rightarrow U$ is a singular \dot{k} cube in U, define its boundary to be

$$
\partial \sigma=\sum_{i, \epsilon}(-1)^{i+\epsilon} \sigma \circ \phi_{i, \epsilon}^{k}
$$

- If $c=\sum_{\sigma} a_{\sigma} \sigma$ is a singular k-chain in \underline{U}, define its boundary to be

$$
\partial c=\partial\left(\sum{\underset{\sim}{a}}^{a_{\sigma} \sigma}\right)=\sum a_{\sigma} \partial \sigma
$$

- Check $\partial^{2}=0$
- If $\alpha \in A^{k}(U)$ is a k-form and $c=\sum a_{\sigma} \sigma \in S_{k}(U)$ is a k-chain, define

$$
\int_{c} \alpha_{l}=\sum_{\sigma} a_{\sigma} \int_{\sigma} \alpha=\sum_{\sigma} a_{\sigma} \int_{1 k} \sigma^{*} \alpha \quad \sigma^{\sigma} \because
$$

- Theorem (Stokes's Theorem)

For all $\alpha \in A^{k-1}(U)$ and for all $c \in S_{k}(U)$

$$
\int_{c} d \alpha=\int_{\partial c} \alpha
$$

$$
\int \sigma^{\sigma^{x} \alpha}=\int \operatorname{diz} \quad \forall \alpha \in A^{k}\left(I^{k}\right)
$$

$$
\frac{1 \partial I^{k} I^{k}}{V n=A^{n u}\left(I^{k}\right)}
$$

$$
k=q_{e_{i}} f_{i} \cdot d r_{i}-d x_{v}-d x^{k}
$$

$$
k=21-\operatorname{lom} \text { on } I^{2}
$$

$f d g+g d y$

$$
\left.\int_{\partial 5}=\sum(-)^{i k s} \varphi_{c, c}^{r}+c\right)
$$

